Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 664: 790-800, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38492380

ABSTRACT

Deleterious volumetric expansion and poor electrical conductivity seriously hinder the application of Si-based anode materials in lithium-ion batteries (LIBs). Herein, boron-doped three-dimensional (3D) porous carbon framework/carbon shell encapsulated silicon (B-3DCF/Si@C) hybrid composites are successfully prepared by two coating and thermal treatment processes. The presence of 3D porous carbon skeleton and carbon shell effectively improves the mechanical properties of the B-3DCF/Si@C electrode during the cycling process, ensures the stability of the electrical contacts of the silicon particles and stabilizes the solid electrolyte interface (SEI) layer, thus enhancing the electronic conductivity and ion migration efficiency of the anode. The developed B-3DCF/Si@C anode has a high reversible capacity, excellent cycling stability and outstanding rate performance. A reversible capacity of 1288.5 mAh/g is maintained after 600 cycles at a current density of 400 mA g-1. The improved electrochemical performance is demonstrated in a full cell using a LiFePO4-based cathode. This study presents a novel approach that not only mitigates the large volume expansion effects in LIB anode materials, but also provides a reference model for the preparation of porous composites with various functionalities.

2.
J Colloid Interface Sci ; 646: 538-546, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37210901

ABSTRACT

Silicon (Si) is considered as one of the most promising candidates for next-generation lithium-ion battery (LIB) anode due to its high theoretical capacity. However, the drastic volume change of Si anodes during lithiation/delithiation processes leads to rapid capacity fade. Herein, a three-dimensional Si anode with multiple protection strategy is proposed, including citric acid-modification of Si particles (CA@Si), GaInSn ternary liquid metal (LM) addition, and porous copper foam (CF) based electrode. The CA modified supports strong adhesive attraction of Si particles with binder and LM penetration maintains good electrical contact of the composite. The CF substrate constructs a stable hierarchical conductive framework, which could accommodate the volume expansion to retain integrity of the electrode during cycling. As a result, the obtained Si composite anode (CF-LM-CA@Si) demonstrates a discharge capacity of 3.14 mAh cm-2 after 100 cycles at 0.4 A g-1, corresponding to 76.1% capacity retention rate based on the initial discharge capacity and delivers comparable performance in full cells. The present study provides an applicable prototype of high-energy density electrodes for LIBs.

3.
J Colloid Interface Sci ; 640: 829-838, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36905892

ABSTRACT

Transition metal oxide (TMO)-based electrodes exhibit increased capacities, yet the mechanism behind the true cause of capacity in such materials remains unclear. Herein, hierarchical porous and hollow Co-CoO@NC spheres assembled by nanorods with refined nanoparticles and amorphous carbon have been synthesized by a two-step annealing approach. A temperature gradient-driven mechanism is revealed for the evolution of the hollow structure. Compared with the solid CoO@NC spheres, the novel hierarchical of Co-CoO@NC can fully utilize the interior active material by exposing both ends of each nanorod into electrolyte. The hollow interior provides extra space for the volume variation, leading to an up-trend capacity of 919.3 mAh g-1 at 200 mA g-1 over 200 cycles. Differential capacity curves disclose that solid electrolyte interface (SEI) films reactivation partly contributes to increasing reversible capacity. The introduction of nanosized Co particles benefits the process by participating in the transformation of SEI components. This study provides a guide for constructing anodic material with exceptional electrochemical performance.

4.
J Colloid Interface Sci ; 638: 99-108, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36736122

ABSTRACT

Anodes based on silicon/carbon composites promise their commercial prospects for next-generation lithium ion batteries owing to their merits of high specific capacity, enhanced ionic and electronic conductivity, and excellent compatibility. Herein, a series of carbonaceous framework/Si composites are designed and prepared by rational waste utilization. N, P codoped foam-like porous carbon/Si composites (FPC@Si) and N, P codoped carbon coated Si composites (NPC@Si) are fabricated by utilizing expired milk powder as a carbon source with facile treatment methods. The results indicate that the porous carbon skeleton and carbon shell can improve the conductivity of Si and stabilize the solid electrolyte interfaces to avoid direct contact between active material and electrolyte. Moreover, the influence of drastic volume expansion of Si on the anode can be efficiently alleviated during charge/discharge processes. Therefore, the Si/C composite electrodes present excellent long-term cycling stability and rate capability. The electrochemical performance shows that the reversible capacity of FPC@Si and NPC@Si can be respectively maintained at 587.3 and 731.2 mAh g-1 after 1000 charge/discharge cycles under 400 mA g-1. Most significantly, the optimized Si/C composite electrodes exhibit outstanding performance in the full cell tests, promising them great potential for practical applications. This study not only provides a valuable guidance for recycling of waste resources, but also supports a rational design strategy of advanced composite materials for high-performance energy storage devices.


Subject(s)
Lithium , Milk , Animals , Emulsions , Powders , Ions , Carbon , Electrodes
5.
J Colloid Interface Sci ; 631(Pt A): 112-121, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36370494

ABSTRACT

The rapid capacity decay severely limits the commercial applications of metal oxide-based electrodes. Exploring innovative materials with enhanced lithium storage performance is urgent and challenging. Herein, we propose a strategy for the synthesis of NiCo-NiCoO2@C composites using layered double hydroxide (LDH) precursors. When used as the anode materials, the composites deliver enhanced capacity throughout the continuous charge-discharge process. In our design, the electrochemically active NiCoO2 nanoparticles pulverize the NiCo phases via a conversion reaction. The NiCo phases can increase capacity by reacting with the Li2O yielded from the conversion of NiCoO2 and participating in the reversible transformation of solid-electrolyte interface (SEI) films, thus ensuring fast charge transfer. Voids that appear with the consumption of NiCo phases can provide abundant channels for Li+ transportation. Carbon matrices can effectively alleviate the stress generated during repeated cycles of expansion and shrinkage. Benefiting from these features, NiCo-NiCoO2@C anode delivers a highly enhanced reversible capacity of 961.6 mAh g-1 after 300 cycles at 200 mA g-1. This LDH-based strategy may be extended to the design and synthesis of various enhanced anode materials for lithium-ion batteries (LIBs).

6.
J Colloid Interface Sci ; 625: 373-382, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35717851

ABSTRACT

Capacity retention is one of the key factors affecting the performance of silicon (Si)-based lithium-ion batteries and other energy storage devices. Herein, a three dimension (3D) network self-healing binder (denoted as PVA + LB) consisting of polyvinyl alcohol (PVA) and lithium metaborate (LiBO2) solution is proposed to improve the cycle stability of Si-based lithium-ion batteries. The reversible capacity of the silicon electrode is maintained at 1767.3 mAh g-1 after 180 cycles when employing PVA + LB as the binder, exhibiting excellent cycling stability. In addition, the silicon/carbon (Si/C) anode with the PVA + LB binder presents superior electrochemical performance, achieving a stable cycle life with a capacity retention of 73.7% (858.3 mAh g-1) after 800 cycles at a current density of 1 A g-1. The high viscosity and flexibility, 3D network structure, and self-healing characteristics of the PVA + LB binder are the main reasons to improve the stability of the Si or Si/C contained electrodes. The novel self-healing binder shows great potential in designing the new generation of silicon-based lithium-ion batteries and even electrochemical energy storage devices.

7.
RSC Adv ; 8(64): 36819-36825, 2018 Oct 26.
Article in English | MEDLINE | ID: mdl-35558926

ABSTRACT

The construction of defects on TiO2 surface has attracted great interest due to their prominent effect on photocatalytic activity. However, most synthesis methods often lead to unstable oxygen vacancies which limits their effect for improvement of visible light photoactivity. In this work, stable oxygen vacancies were successfully introduced in commercial TiO2 (P25) via one-step molten salt (MS) method. Due to the incomplete combination of trifluoroacetic acid (TFA) adsorbed on TiO2 in MS, the lattice oxygen atoms of TiO2 were consumed resulting in the formation of oxygen vacancies both on the surface and in the bulk of TiO2. The optical adsorption edge of oxygen defective TiO2 showed a substantial shift toward to visible light region combining with a color variation from white to dark blue. Meanwhile, the morphology and crystalline phase were also changed because of the presence of oxygen vacancies. As a result, the blue TiO2 with rich oxygen vacancies exhibited a considerably enhanced photocatalytic activity for decomposition of rhodamine B (RhB) and selective oxidation of benzyl alcohol under visible light irradiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...