Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.810
Filter
1.
Physiol Plant ; 176(3): e14356, 2024.
Article in English | MEDLINE | ID: mdl-38828569

ABSTRACT

Halophyte Halogeton glomeratus mostly grows in saline desert areas in arid and semi-arid regions and is able to adapt to adverse conditions such as salinity and drought. Earlier transcriptomic studies revealed activation of the HgS2 gene in the leaf of H. glomeratus seedlings when exposed to saline conditions. To identify the properties of HgS2 in H. glomeratus, we used yeast transformation and overexpression in Arabidopsis. Yeast cells genetically transformed with HgS2 exhibited K+ uptake and Na+ efflux compared with control (empty vector). Stable overexpression of HgS2 in Arabidopsis improved its resistance to salt stress and led to a notable rise in seed germination in salinity conditions compared to the wild type (WT). Transgenic Arabidopsis regulated ion homeostasis in plant cells by increasing Na+ absorption and decreasing K+ efflux in leaves, while reducing Na+ absorption and K+ efflux in roots. In addition, overexpression of HgS2 altered transcription levels of stress response genes and regulated different metabolic pathways in roots and leaves of Arabidopsis. These results offer new insights into the role of HgS2 in plants' salt tolerance.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Potassium , Salt Tolerance , Salt-Tolerant Plants , Sodium , Arabidopsis/genetics , Arabidopsis/physiology , Salt Tolerance/genetics , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/physiology , Salt-Tolerant Plants/metabolism , Sodium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Potassium/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/metabolism , Plant Roots/genetics , Plant Roots/physiology , Plant Roots/metabolism , Sodium Chloride/pharmacology , Germination/genetics , Germination/drug effects , Amaranthaceae/genetics , Amaranthaceae/physiology
2.
J Am Chem Soc ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833517

ABSTRACT

Understanding how water ligands regulate the conformational changes and functionality of the oxygen-evolving complex (OEC) in photosystem II (PSII) throughout the catalytic cycle of oxygen evolution remains a highly intriguing and unresolved challenge. In this study, we investigate the effect of water insertion (WI) on the redox state of the OEC by using the molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) hybrid methods. We find that water binding significantly reduces the free energy change for proton-coupled electron transfer (PCET) from Mn to YZ•, underscoring the important regulatory role of water binding, which is essential for enabling the OEC redox-leveling mechanism along the catalytic cycle. We propose a water binding mechanism in which WI is thermodynamically favored by the closed-cubane form of the OEC, with water delivery mediated by Ca2+ ligand exchange. Isomerization from the closed- to open-cubane conformation at three post-WI states highlights the importance of the location of the MnIII center in the OEC and the orientation of its Jahn-Teller axis to conformational changes of the OEC, which might be critical for the formation of the O-O bond. These findings reveal a complex interplay between conformational changes in the OEC and the ligand environment during the activation of the OEC by YZ•. Analogous regulatory effects due to water ligand binding are expected to be important for a wide range of catalysts activated by redox state transitions in aqueous environments.

3.
Hellenic J Cardiol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844023

ABSTRACT

BACKGROUND: We aimed to examine bi-ventricular remodeling and function following Ebstein's anomaly (EbA) surgical correction using echocardiographic techniques, particularly the relations between the bi-ventricular changes and the EbA types. METHODS: From April 2015 to August 2022, 110 patients with EbA were included in this retrospective study based on the Carpentier classification. Echocardiography assessments during the preoperative, early, and mid-term postoperative periods were performed. RESULTS: The 54 patients with types A and B EbA were included in group 1, whereas the 56 with types C and D were in group 2. Seventy-eight patients underwent surgical correction of EbA. The median age at operation was 8.8 years. During the mid-term follow-up, only 9.1% of the patients had moderate or severe tricuspid regurgitation. Right ventricular (RV) systolic function worsened in group 2 at discharge (fractional area change: 27.6±11.2 versus 35.4±11.5 [baseline], P<0.05; global longitudinal strain: -10.8±4.4 versus -17.9±4.7 [baseline], P=0.0001). RV function slowly recovered at a mean of 12-month follow-up. Regarding left ventricular (LV) and RV systolic function, no statistical difference was found between before and after surgery in group 1. CONCLUSIONS: A high success rate of surgical correction of EbA with an encouraging durability of the valve was noted. Bi-ventricular systolic function was maintained fairly in most patients with types A and B postoperatively. A late increase in RV systolic function after an initial reduction and unchanged LV systolic function were observed in the patients with types C and D postoperatively.

4.
J Inflamm Res ; 17: 3459-3473, 2024.
Article in English | MEDLINE | ID: mdl-38828052

ABSTRACT

Background: Aortic valve sclerosis (AVS) is a pathological state that can progress to aortic stenosis (AS), which is a high-mortality valvular disease. However, effective medical therapies are not available to prevent this progression. This study aimed to explore potential biomarkers of AVS-AS advancement. Methods: A microarray dataset and an RNA-sequencing dataset were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened from AS and AVS samples. Functional enrichment analysis, protein-protein interaction (PPI) network construction, and machine learning model construction were conducted to identify diagnostic genes. A receiver operating characteristic (ROC) curve was generated to evaluate diagnostic value. Immune cell infiltration was then used to analyze differences in immune cell proportion between tissues. Finally, immunohistochemistry was applied to further verify protein concentration of diagnostic factors. Results: A total of 330 DEGs were identified, including 92 downregulated and 238 upregulated genes. The top 5% of DEGs (n = 17) were screened following construction of a PPI network. IL-7 and VCAM-1 were identified as the most significant candidate genes via least absolute shrinkage and selection operator (LASSO) regression. The diagnostic value of the model and each gene were above 0.75. Proportion of anti-inflammatory M2 macrophages was lower, but the fraction of pro-inflammatory gamma-delta T cells was elevated in AS samples. Finally, levels of IL-7 and VCAM-1 were validated to be higher in AS tissue than in AVS tissue using immunohistochemistry. Conclusion: IL-7 and VCAM-1 were identified as biomarkers during the disease progression. This is the first study to analyze gene expression differences between AVS and AS and could open novel sights for future studies on alleviating or preventing the disease progression.

5.
Digit Health ; 10: 20552076241252648, 2024.
Article in English | MEDLINE | ID: mdl-38726216

ABSTRACT

Objective: The escalating global aging population underscores the need to effectively manage geriatric diseases, constituting a significant public health concern. Community-based rehabilitation has emerged as a crucial and accessible paradigm for the rehabilitation of older adults. In China, however, the practical implementation of community-based rehabilitation faces formidable challenges, including a dearth of specialized rehabilitation therapists, substantial disparities between demand and supply, and suboptimal satisfaction rates. We aimed to develop a community-based rehabilitation management platform for older adults centered around digital health technology, with the plan to conduct a cluster randomized controlled trial to gather more evidence to explore the best practices and service models of community-based rehabilitation based on digital health technology. Methods: This cluster randomized controlled trial will be conducted in Zunyi City, China. We will recruit 286 adults aged ≥60 years and randomly allocate 20 subdistricts in a 1:1 ratio into either the intervention group, which will use the Rehabilitation Journey application, or the control group, which will be given a Rehabilitation Information Booklet for Older Adults. Both groups will undergo a 12-month rehabilitation management program, encompassing six months of guidance and an additional six months of follow-up through online and offline methods. The evaluation indicators will be assessed at enrollment and at 3rd, 6th, and 12th month. Discussion: This study endeavors to furnish novel insights to develop a tailored community-based rehabilitation management program for older adults, delivering customized, intelligent, and precise rehabilitation services.

6.
Tree Physiol ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728368

ABSTRACT

Flavonoids are crucial medicinal active ingredients in Ginkgo biloba. However, the effect of protein post-translational modifications (PTMs) on flavonoid biosynthesis remains poorly explored. Lysine acetylation, a reversible PTM, plays a crucial role in metabolic regulation. This study aims to investigate the potential role of acetylation in G. biloba flavonoid biosynthesis. Through comprehensive analysis of transcriptomes, metabolomes, proteomes, and acetylated proteins in different tissues, a total of 11,788 lysine acetylation sites were identified on 4324 acetylated proteins, including 89 acetylation sites on 23 proteins. Additionally, 128 types of differentially accumulated flavonoids were identified among tissues, and a dataset of differentially expressed genes related to the flavonoid biosynthesis pathway was constructed. Twelve (CHI, C3H1, ANR, DFR, CCoAOMT1, F3H1, F3H2, CCoAOMT2, C3H2, HCT, F3'5'H, and FG2) acetylated proteins that might be involved in flavonoid biosynthesis were identified. Specifically, we found that the modification levels of CCoAOMT1 and F3'5'H sites correlated with the catalytic production of homoeriodictyol and dihydromyricetin, respectively. Inhibitors of lysine deacetylase (trichostatin A, TSA) impacted total flavonoid content in different tissues and increased flavonoid levels in G. biloba roots. Treatment with TSA revealed that expression levels of GbF3'5'H and GbCCoAOMT1 in stems and leaves aligned with total flavonoid content variations, while in roots, expression levels of GbC3H2 and GbFG2 corresponded to total flavonoid content changes. Collectively, these findings reveal for the first time the important role of acetylation in flavonoid biosynthesis.

7.
Luminescence ; 39(5): e4743, 2024 May.
Article in English | MEDLINE | ID: mdl-38692854

ABSTRACT

A unique luminescent lanthanide metal-organic framework (LnMOF)-based fluorescence detection platform was utilized to achieve sensitive detection of vomitoxin (VT) and oxytetracycline hydrochloride (OTC-HCL) without the use of antibodies or biomolecular modifications. The sensor had a fluorescence quenching constant of 9.74 × 106 M-1 and a low detection limit of 0.68 nM for vomitoxin. Notably, this is the first example of a Tb-MOF sensor for fluorescence detection of vomitoxin. We further investigated its response to two mycotoxins, aflatoxin B1 and ochratoxin A, and found that their Stern-Volmer fluorescence quenching constants were lower than those of VT. In addition, the fluorescence sensor realized sensitive detection of OTC-HCL with a detection limit of 0.039 µM. In conclusion, the method has great potential as a sensitive and simple technique to detect VT and OTC-HCL in water.


Subject(s)
Metal-Organic Frameworks , Oxytetracycline , Terbium , Oxytetracycline/analysis , Oxytetracycline/chemistry , Terbium/chemistry , Metal-Organic Frameworks/chemistry , Spectrometry, Fluorescence , Fluorescent Dyes/chemistry , Limit of Detection , Water/chemistry , Fluorescence , Water Pollutants, Chemical/analysis
9.
Acta Pharmacol Sin ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760545

ABSTRACT

Tacrolimus, one of the macrolide calcineurin inhibitors, is the most frequently used immunosuppressant after transplantation. Long-term administration of tacrolimus leads to dyslipidemia and affects liver lipid metabolism. In this study, we investigated the mode of action and underlying mechanisms of this adverse reaction. Mice were administered tacrolimus (2.5 mg·kg-1·d-1, i.g.) for 10 weeks, then euthanized; the blood samples and liver tissues were collected for analyses. We showed that tacrolimus administration induced significant dyslipidemia and lipid deposition in mouse liver. Dyslipidemia was also observed in heart or kidney transplantation patients treated with tacrolimus. We demonstrated that tacrolimus did not directly induce de novo synthesis of fatty acids, but markedly decreased fatty acid oxidation (FAO) in AML12 cells. Furthermore, we showed that tacrolimus dramatically decreased the expression of HMGCS2, the rate-limiting enzyme of ketogenesis, with decreased ketogenesis in AML12 cells, which was responsible for lipid deposition in normal hepatocytes. Moreover, we revealed that tacrolimus inhibited forkhead box protein O1 (FoxO1) nuclear translocation by promoting FKBP51-FoxO1 complex formation, thus reducing FoxO1 binding to the HMGCS2 promoter and its transcription ability in AML12 cells. The loss of HMGCS2 induced by tacrolimus caused decreased ketogenesis and increased acetyl-CoA accumulation, which promoted mitochondrial protein acetylation, thereby resulting in FAO function inhibition. Liver-specific HMGCS2 overexpression via tail intravenous injection of AAV8-TBG-HMGCS2 construct reversed tacrolimus-induced mitochondrial protein acetylation and FAO inhibition, thus removing the lipid deposition in hepatocytes. Collectively, this study demonstrates a novel mechanism of liver lipid deposition and hyperlipidemia induced by long-term administration of tacrolimus, resulted from the loss of HMGCS2-mediated ketogenesis and subsequent FAO inhibition, providing an alternative target for reversing tacrolimus-induced adverse reaction.

10.
Biomacromolecules ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781116

ABSTRACT

Biodegradable polymers with shape memory effects (SMEs) offer promising solutions for short-term medical interventions, facilitating minimally invasive procedures and subsequent degradation without requiring secondary surgeries. However, achieving a good balance among desirable SMEs, mechanical performance, degradation rate, and bioactivities remains a significant challenge. To address this issue, we established a strategy to develop a versatile biodegradable polyurethane (PPDO-PLC) with tunable hierarchical structures via precise chain segment control. Initial copolymerization of l-lactide and ε-caprolactone sets a tunable Tg close to body temperature, followed by block copolymerization with poly(p-dioxanone) to form a hard domain. This yields a uniform microphase-separation morphology, ensuring robust SME and facilitating the development of roughly porous surface structures in alkaline environments. Cell experiments indicate that these rough surfaces significantly enhance cellular activities, such as adhesion, proliferation, and osteogenic differentiation. Our approach provides a methodology for balancing biodegradability, SMEs, three-dimensional (3D) printability, and bioactivity in materials through hierarchical structure regulation.

11.
FASEB J ; 38(10): e23666, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38780091

ABSTRACT

Genome-wide association studies have identified many single nucleotide polymorphisms (SNPs) associated with erythrocyte traits. However, the functional variants and their working mechanisms remain largely unknown. Here, we reported that the SNP of rs80207740, which was associated with red blood cell (RBC) volume and hemoglobin content across populations, conferred enhancer activity to XPO7 gene via allele-differentially binding to Ikaros family zinc finger 1 (IKZF1). We showed that the region around rs80207740 was an erythroid-specific enhancer using reporter assays, and that the G-allele further enhanced activity. 3D genome evidence showed that the enhancer interacted with the XPO7 promoter, and eQTL analysis suggested that the G-allele upregulated expression of XPO7. We further showed that the rs80207740-G allele facilitated the binding of transcription factor IKZF1 in EMSA and ChIP analyses. Knockdown of IKZF1 and GATA1 resulted in decreased expression of Xpo7 in both human and mouse erythroid cells. Finally, we constructed Xpo7 knockout mouse by CRISPR/Cas9 and observed anemic phenotype with reduced volume and hemoglobin content of RBC, consistent to the effect of rs80207740 on erythrocyte traits. Overall, our study demonstrated that rs80207740 modulated erythroid indices by regulating IKZF1 binding and Xpo7 expression.


Subject(s)
Alleles , Erythrocytes , Genome-Wide Association Study , Ikaros Transcription Factor , Polymorphism, Single Nucleotide , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism , Humans , Animals , Mice , Erythrocytes/metabolism , Karyopherins/genetics , Karyopherins/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Promoter Regions, Genetic
12.
J Fr Ophtalmol ; 47(7): 104213, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788251

ABSTRACT

PURPOSE: To investigate the rate of axial length elongation and high myopia progression in operated eyes before and after posterior scleral reinforcement (PSR) surgery. METHODS: This was a retrospective study. Children with pathological myopia treated with PSR at Beijing Tongren Hospital between May 2013 and May 2020 were recruited into the PSR surgery group. Children matched for age and myopia were recruited into the control group. All children underwent comprehensive ophthalmologic examinations. The presurgical and postsurgical rates of axial length elongation and myopic (spherical equivalent) progression were calculated. RESULTS: A total of 35 PSR patients were included in the study. The mean age was 6.5±3.0 years (range 2 to 14 years). Mean follow-up was 544 days (range 216 to 1657 days). The rate of axial length elongation was significantly less after posterior scleral reinforcement surgery (0.505±0.048mm per year prior to surgery; 0.382±0.045mm per year after surgery, P<0.001). The rate of myopic progression decreased after posterior scleral reinforcement surgery (1.162±0.118 D per year prior to surgery; 0.153±0.437 D per year after surgery, P=0.0239). There was no statistically significant difference in axial length elongation or myopic progression between pre-inclusion and post-inclusion in the control group. Moreover, the children's best-corrected visual acuity was significantly improved after posterior scleral reinforcement surgery (P<0.001). CONCLUSION: Posterior scleral reinforcement surgery effectively decreased the rate of high myopic progression and axial length elongation in children.

13.
Article in English | MEDLINE | ID: mdl-38789706

ABSTRACT

In a semi-closed visualization pipeline, this experiment studied the inhibitory effect of ultra-fine pure water mist, ultra-fine water mist containing inorganic salt and ultra-fine water mist containing bacteria-inorganic salt on 9.8% methane explosion under five different quality of spray volume. Combined with the methane explosion suppression experiment, the ability of methane-oxidizing bacteria to degrade 9.8% of methane was studied in a simulated pipeline. Experiments showed that the addition of inorganic salt and the degradation of methane-oxidizing bacteria could improve the suppression explosion effect of ultra-fine water mist, and the suppression explosion effect was related to the volume of water mist. Under the same ultra-fine water mist condition, with the increase of the volume of water mist, the explosion suppression effect was improved. Compared with pure methane, pure water ultra-fine water mist, and inorganic salt ultra-fine water mist, the maximum explosion overpressure and flame propagation speed under the condition of bacteria-inorganic salt ultra-fine water mist were significantly reduced. Compared with the explosion of pure methane, due to the degradation of methane by methane-oxidizing bacteria, when the degradation time was 10 h, and the volume of ultra-fine water mist containing bacteria-inorganic salt was 12.5 mL, the maximum explosion overpressure dropped significantly from 0.663 to 0.343 MPa, a decrease of 48.27%. The appearance time of the maximum explosion overpressure was delayed from 208.8 to 222.6 ms. The peak flame velocity was 4 m s-1, which was 83.3% lower than that of 9.8% pure methane explosion. This study will contribute to the development of efficient ultrafine water mist synergistic inhibitors for the prevention of methane explosion disasters.

14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 749-752, 2024 Jun 10.
Article in Chinese | MEDLINE | ID: mdl-38818563

ABSTRACT

OBJECTIVE: To analyze the clinical characteristics and genetic basis of a male patient with primary infertility caused by Acephalic spermatozoa syndrome. METHODS: A patient who had presented at the Henan Provincial People's Hospital on October 1, 2022 was selected as the study subject. Clinical data and results of laboratory exams and sperm electron microscopy were collected. The patient was subjected to whole exome sequencing (WES), and candidate variants were verified by Sanger sequencing and pathogenicity analysis. RESULTS: WES revealed that the patient has harbored compound heterozygous variants of the PMFBP1 gene, namely c.853del (p.Ala285Leufs*24) and c.1276A>T (p.Lys426X), which were both unreported previously. Sanger sequencing suggested that the c.853del (p.Ala285Leufs*24) variant has derived from his deceased mother, whilst the c.1276A>T (p.Lys426X) variant has derived from his father. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), both variants were classified as pathogenic (PVS1+PM2_Supporting+PP4). CONCLUSION: The compound heterozygous variants of the PMFBP1 gene probably underlay the Acephalic spermatozoa syndrome in this patient. The discovery of the novel variants has also enriched the mutational spectrum of Acephalic spermatozoa syndrome.


Subject(s)
Spermatozoa , Humans , Male , Adult , Mutation , Exome Sequencing , Infertility, Male/genetics , Carrier Proteins/genetics , Genetic Testing , Teratozoospermia/genetics , Microfilament Proteins
15.
Angew Chem Int Ed Engl ; : e202406650, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818631

ABSTRACT

Dispersion of single atoms (SAs) in the host is important for optimizing catalytic activity. Herein, we propose a novel strategy to tune oxygen vacancies in CeO2-X directionally anchoring the single atom platinum (PtSA), which is uniformly dispersed on the rGO. The catalyst's performance for the hydrogen evolution reaction (HER) can be enhanced by controlling different densities of CeO2-X in rGO. The PtSA performs best optimally densified and loaded on homogeneous and moderately densified CeO2-X/rGO (PtSA-M-CeO2-X/rGO). It exhibited high activity in HER with an overpotential of 25 mV at 0.5 M H2SO4 and 33 mV at 1 KOH than that of almost reported electrocatalysts. Furthermore, it exhibited stability for 90 hours at -100 mA cm-2 in 1 KOH and -150 mA cm-2 in 0.5 M H2SO4 conditions, respectively. Through comprehensive experiments and theoretical calculations, the suitable dispersion density of PtSA on the defects of CeO2-X with more active sites gives the potential for practical applications. This research paves the way for developing single-atom catalysts with exceptional catalytic activity and stability, holding promise in advanced green energy conversion through defects engineering.

16.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2147-2157, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812230

ABSTRACT

The fecal metabolomics method was employed to investigate the cognitive improvement mechanism of Polygoni Multiflori Radix in Alzheimer's disease(AD) and examine the effects of different degrees of steaming and sunning on cognitive function in AD model mice. Additionally, the processing principle of Polygoni Multiflori Radix was discussed. Forty-eight 5-month-old APP/PS1 mice were randomly assigned to the following groups: model group, positive group, raw product group, three-steaming and three-sunning product group, six-steaming and six-sunning product group, and nine-steaming and nine-sunning product group. Seven negative control mice from the same litter were included as the blank group. After 150 days of intragastric administration, the learning and memory abilities of mice in each group were assessed by using the Barnes maze and dark avoidance tests. Fecal samples were collected for extensive targeted metabolomics testing. Principal component analysis(PCA), orthogonal partial least squares discriminant analysis(OPLS-DA), and other multivariate statistical methods were utilized to analyze metabolites in mouse feces. Comparison of behavioral results between the model group and different product groups demonstrated that the six-steaming and six-sunning product group exhibited significantly reduced latency in the Barnes maze positioning and navigation test(P<0.05), as well as a notable decrease in the number of errors in the space exploration experiment(P<0.05). Moreover, the latency of mice entering the dark box for the first time in the dark avoidance experiment was significantly prolonged(P<0.05), indicating the best overall improvement in the learning and memory ability of AD model mice. Metabolomics results revealed that compared with the model group, the differential metabolites in other groups in descending order were as follows: six-steaming and six-sunning product group > nine-steaming and nine-sunning product group > raw product group > three-steaming and three-sunning product group, encompassing 146, 120, 95, and 81 potential biomarkers, respectively. Among them, 16 differential metabolites were related to AD disease. Further comparisons based on the degree of processing indicated that the six-steaming and six-sunning product group exhibited the most significant adjustments in total metabolic pathways, particularly regulating the interconversion of pentose and glucuronic acid, as well as amino acid anabolism and other pathways. In summary, the mechanism of Polygoni Multiflori Radix after processing in enhancing the learning and memory ability of APP/PS1 mice may be associated with improved amino acid metabolism and increased energy metabolism in the body. The six-steaming and six-sunning yielded the best outcomes.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Drugs, Chinese Herbal , Feces , Metabolomics , Polygonum , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Mice , Feces/chemistry , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Male , Polygonum/chemistry , Humans , Disease Models, Animal , Female , Cognition/drug effects
17.
Elife ; 122024 May 30.
Article in English | MEDLINE | ID: mdl-38814697

ABSTRACT

Almost all herbivorous insects feed on plants and use sucrose as a feeding stimulant, but the molecular basis of their sucrose reception remains unclear. Helicoverpa armigera as a notorious crop pest worldwide mainly feeds on reproductive organs of many plant species in the larval stage, and its adult draws nectar. In this study, we determined that the sucrose sensory neurons located in the contact chemosensilla on larval maxillary galea were 100-1000 times more sensitive to sucrose than those on adult antennae, tarsi, and proboscis. Using the Xenopus expression system, we discovered that Gr10 highly expressed in the larval sensilla was specifically tuned to sucrose, while Gr6 highly expressed in the adult sensilla responded to fucose, sucrose and fructose. Moreover, using CRISPR/Cas9, we revealed that Gr10 was mainly used by larvae to detect lower sucrose, while Gr6 was primarily used by adults to detect higher sucrose and other saccharides, which results in differences in selectivity and sensitivity between larval and adult sugar sensory neurons. Our results demonstrate the sugar receptors in this moth are evolved to adapt toward the larval and adult foods with different types and amounts of sugar, and fill in a gap in sweet taste of animals.


Subject(s)
Larva , Moths , Sensilla , Sucrose , Animals , Sucrose/metabolism , Sucrose/pharmacology , Larva/physiology , Moths/physiology , Moths/drug effects , Sensilla/physiology , Sensilla/metabolism , Taste/physiology , Taste Perception/physiology , Helicoverpa armigera
18.
Oncologist ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760956

ABSTRACT

OBJECTIVE: Patients with radioiodine-refractory (RAIR) differentiated thyroid carcinoma (DTC; RAIR-DTC) have a poor prognosis. The aim of this study was to provide new insights and possibilities for the diagnosis and treatment of RAIR-DTC. METHODS: The metabolomics of 24 RAIR-DTC and 18 non-radioiodine-refractory (NonRAIR) DTC patients samples were analyzed by liquid chromatograph-mass spectrometry. Cellular radioiodine uptake was detected with γ counter. Sodium iodide symporter (NIS) expression and thyroid stimulating hormone receptor (TSHR) were measured by Western blot analysis. CCK8 and colony formation assays were used to measure cellular proliferation. Scratch and transwell assays were performed to assess cell migration and invasion. Annexin V/PI staining was used to detect cell apoptosis. Cell growth in vivo was evaluated by a tumor xenograft model. The acetoacetate (AcAc) level was measured by ELISA. Pathological changes, Ki67, NIS, and TSHR expression were investigated by immunohistochemistry. RESULTS: The metabolite profiles of RAIR could be distinguished from those of NonRAIR, with AcAc significantly lower in RAIR. The significantly different metabolic pathway was ketone body metabolism. AcAc increased NIS and TSHR expression and improved radioiodine uptake. AcAc inhibited cell proliferation, migration, and invasion, and as well promoted cell apoptosis. Ketogenic diet (KD) elevated AcAc levels and significantly suppressed tumor growth, as well as improved NIS and TSHR expression. CONCLUSION: Significant metabolic differences were observed between RAIR and NonRAIR, and ketone body metabolism might play an important role in RAIR-DTC. AcAc improved cellular iodine uptake and had antitumor effects for thyroid carcinoma. KD might be a new therapeutic strategy for RAIR-DTC.

19.
Small ; : e2311449, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738782

ABSTRACT

Metal-Organic Frameworks (MOFs) are a very promising material in the fields of energy and catalysis due to their rich active sites, tunable pore size, structural adaptability, and high specific surface area. The concepts of "carbon peak" and "carbon neutrality" have opened up huge development opportunities in the fields of energy storage, energy conversion, and catalysis, and have made significant progress and breakthroughs. In recent years, people have shown great interest in the development of MOFs materials and their applications in the above research fields. This review introduces the design strategies and latest progress of MOFs are included based on their structures such as core-shell, yolk-shell, multi-shelled, sandwich structures, unique crystal surface exposures, and MOF-derived nanomaterials in detail. This work comprehensively and systematically reviews the applications of MOF-based materials in energy and catalysis and reviews the research progress of MOF materials for atmospheric water harvesting, seawater uranium extraction, and triboelectric nanogenerators. Finally, this review looks forward to the challenges and opportunities of controlling the synthesis of MOFs through low-cost, improved conductivity, high-temperature heat resistance, and integration with machine learning. This review provides useful references for promoting the application of MOFs-based materials in the aforementioned fields.

20.
J Am Chem Soc ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38560787

ABSTRACT

Poly(vinylidene fluoride) (PVDF)-based solid electrolytes with a Li salt-polymer-little residual solvent configuration are promising candidates for solid-state batteries. Herein, we clarify the microstructure of PVDF-based composite electrolyte at the atomic level and demonstrate that the Li+-interaction environment determines both interfacial stability and ion-transport capability. The polymer works as a "solid diluent" and the filler realizes a uniform solvent distribution. We propose a universal strategy of constructing a weak-interaction environment by replacing the conventional N,N-dimethylformamide (DMF) solvent with the designed 2,2,2-trifluoroacetamide (TFA). The lower Li+ binding energy of TFA forms abundant aggregates to generate inorganic-rich interphases for interfacial compatibility. The weaker interactions of TFA with PVDF and filler achieve high ionic conductivity (7.0 × 10-4 S cm-1) of the electrolyte. The solid-state Li||LiNi0.8Co0.1Mn0.1O2 cells stably cycle 4900 and 3000 times with cutoff voltages of 4.3 and 4.5 V, respectively, as well as deliver superior stability at -20 to 45 °C and a high energy density of 300 Wh kg-1 in pouch cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...