Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 5294, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31757945

ABSTRACT

A shared paradigm of mismatch repair (MMR) across biology depicts extensive exonuclease-driven strand-specific excision that begins at a distant single-stranded DNA (ssDNA) break and proceeds back past the mismatched nucleotides. Historical reconstitution studies concluded that Escherichia coli (Ec) MMR employed EcMutS, EcMutL, EcMutH, EcUvrD, EcSSB and one of four ssDNA exonucleases to accomplish excision. Recent single-molecule images demonstrated that EcMutS and EcMutL formed cascading sliding clamps on a mismatched DNA that together assisted EcMutH in introducing ssDNA breaks at distant newly replicated GATC sites. Here we visualize the complete strand-specific excision process and find that long-lived EcMutL sliding clamps capture EcUvrD helicase near the ssDNA break, significantly increasing its unwinding processivity. EcSSB modulates the EcMutL-EcUvrD unwinding dynamics, which is rarely accompanied by extensive ssDNA exonuclease digestion. Together these observations are consistent with an exonuclease-independent MMR strand excision mechanism that relies on EcMutL-EcUvrD helicase-driven displacement of ssDNA segments between adjacent EcMutH-GATC incisions.


Subject(s)
DNA Breaks, Single-Stranded , DNA Helicases/physiology , DNA Mismatch Repair/physiology , Escherichia coli Proteins/physiology , Escherichia coli/physiology , MutL Proteins/physiology , DNA Helicases/metabolism , DNA Repair/physiology , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Microscopy, Fluorescence , MutL Proteins/metabolism , Single Molecule Imaging
2.
BMB Rep ; 52(10): 589-594, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31401983

ABSTRACT

Single-molecule techniques have been used successfully to visualize real-time enzymatic activities, revealing transient complex properties and heterogeneity of various biological events. Especially, conventional force spectroscopy including optical tweezers and magnetic tweezers has been widely used to monitor change in DNA length by enzymes with high spatiotemporal resolutions of ∼nanometers and ∼milliseconds. However, DNA metabolism results from coordination of a number of components during the processes, requiring efficient monitoring of a complex of proteins catalyzing DNA substrates. In this min-review, we will introduce a simple and multiplexed single-molecule assay to detect DNA substrates catalyzed by enzymes with high-throughput data collection. We conclude with a perspective of possible directions that enhance capability of the assay to reveal complex biological events with higher resolution. [BMB Reports 2019; 52(10): 589-594].


Subject(s)
DNA/metabolism , Single Molecule Imaging/methods , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , Exodeoxyribonucleases/metabolism , High-Throughput Screening Assays , Optical Tweezers , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...