Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.422
Filter
1.
Talanta ; 277: 126331, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823324

ABSTRACT

Recognition and separation of chiral isomers are of great importance in both industrial and biological applications. However, owing to identical molecular formulas and chemical properties of enantiomers, signal transduction and amplification are still two major challenges in chiral sensing. In this study, we developed an enantioselective device by integrating chiral covalent organic framework nanosheets (CONs) with nanochannels for sensitive identification and quantification of enantiomers. Using 3,4-dihydroxyphenylalanine (DOPA) as the model analyte, the as-prepared chiral nanofluidic device exhibits a remarkable chiral recognition ability to l-DOPA than d-DOPA. More importantly, due to the chelation of DOPA with Fe3+ ions, it can efficiently block the ion transport through channel and shield the channel surface charge, which will amplify the difference in the electrochemical response of l-DOPA and d-DOPA. Therefore, a sensitive chiral recognition can be achieved using the present nanofluidic device coupled using electrochemical amplification strategy. Notably, using this method, an ultra-low concentration of l-DOPA (as low as 0.21 pM) can be facilely and successfully detected with a linear range of 1 pM-10 µM. This study provides a reliable and sensitive approach for achieving highly selective detection of chiral molecules.

2.
Lancet ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38824941

ABSTRACT

BACKGROUND: Anti-PD-1 therapy and chemotherapy is a recommended first-line treatment for recurrent or metastatic nasopharyngeal carcinoma, but the role of PD-1 blockade remains unknown in patients with locoregionally advanced nasopharyngeal carcinoma. We assessed the addition of sintilimab, a PD-1 inhibitor, to standard chemoradiotherapy in this patient population. METHODS: This multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial was conducted at nine hospitals in China. Adults aged 18-65 years with newly diagnosed high-risk non-metastatic stage III-IVa locoregionally advanced nasopharyngeal carcinoma (excluding T3-4N0 and T3N1) were eligible. Patients were randomly assigned (1:1) using blocks of four to receive gemcitabine and cisplatin induction chemotherapy followed by concurrent cisplatin radiotherapy (standard therapy group) or standard therapy with 200 mg sintilimab intravenously once every 3 weeks for 12 cycles (comprising three induction, three concurrent, and six adjuvant cycles to radiotherapy; sintilimab group). The primary endpoint was event-free survival from randomisation to disease recurrence (locoregional or distant) or death from any cause in the intention-to-treat population. Secondary endpoints included adverse events. This trial is registered with ClinicalTrials.gov (NCT03700476) and is now completed; follow-up is ongoing. FINDINGS: Between Dec 21, 2018, and March 31, 2020, 425 patients were enrolled and randomly assigned to the sintilimab (n=210) or standard therapy groups (n=215). At median follow-up of 41·9 months (IQR 38·0-44·8; 389 alive at primary data cutoff [Feb 28, 2023] and 366 [94%] had at least 36 months of follow-up), event-free survival was higher in the sintilimab group compared with the standard therapy group (36-month rates 86% [95% CI 81-90] vs 76% [70-81]; stratified hazard ratio 0·59 [0·38-0·92]; p=0·019). Grade 3-4 adverse events occurred in 155 (74%) in the sintilimab group versus 140 (65%) in the standard therapy group, with the most common being stomatitis (68 [33%] vs 64 [30%]), leukopenia (54 [26%] vs 48 [22%]), and neutropenia (50 [24%] vs 46 [21%]). Two (1%) patients died in the sintilimab group (both considered to be immune-related) and one (<1%) in the standard therapy group. Grade 3-4 immune-related adverse events occurred in 20 (10%) patients in the sintilimab group. INTERPRETATION: Addition of sintilimab to chemoradiotherapy improved event-free survival, albeit with higher but manageable adverse events. Longer follow-up is necessary to determine whether this regimen can be considered as the standard of care for patients with high-risk locoregionally advanced nasopharyngeal carcinoma. FUNDING: National Natural Science Foundation of China, Key-Area Research and Development Program of Guangdong Province, Natural Science Foundation of Guangdong Province, Overseas Expertise Introduction Project for Discipline Innovation, Guangzhou Municipal Health Commission, and Cancer Innovative Research Program of Sun Yat-sen University Cancer Center. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.

3.
Sci Rep ; 14(1): 12704, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830996

ABSTRACT

To explore the role of YAP, a key effector of the Hippo pathway, in temporomandibular joint (TMJ) ankylosis. The temporal and spatial expression of YAP was detected via immunohistochemistry and multiplex immunohistochemistry on postoperative Days 1, 4, 7, 9, 11, 14 and 28 in a sheep model. Isolated mesenchymal stem cells (MSCs) from samples of the Day 14. The relative mRNA expression of YAP was examined before and after the osteogenic induction of MSCs. A YAP-silenced MSC model was constructed, and the effect of YAP knockdown on MSC function was examined. YAP is expressed in the nucleus of the key sites that determine the ankylosis formation, indicating that YAP is activated in a physiological state. The expression of YAP increased gradually over time. Moreover, the number of cells coexpressing of RUNX2 and YAP-with the osteogenic active zone labelled by RUNX2-tended to increase after Day 9. After the osteogenic induction of MSCs, the expression of YAP increased. After silencing YAP, the osteogenic, proliferative and migratory abilities of the MSCs were inhibited. YAP is involved in the early development of TMJ bony ankylosis. Inhibition of YAP using shRNA might be a promising way to prevent or treat TMJ ankylosis.


Subject(s)
Ankylosis , Mesenchymal Stem Cells , Osteogenesis , Temporomandibular Joint Disorders , Animals , Mesenchymal Stem Cells/metabolism , Temporomandibular Joint Disorders/metabolism , Temporomandibular Joint Disorders/pathology , Temporomandibular Joint Disorders/genetics , Ankylosis/metabolism , Ankylosis/pathology , Ankylosis/genetics , YAP-Signaling Proteins/metabolism , Temporomandibular Joint/metabolism , Temporomandibular Joint/pathology , Sheep , Cell Proliferation , Disease Models, Animal , Cell Differentiation , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Cell Movement , Transcription Factors/metabolism , Transcription Factors/genetics
4.
Chemistry ; : e202400223, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728573

ABSTRACT

We proposed a new strategy for CO2 hydrogenation to prepare light olefins by introducing Zn into GaZrOx to construct ZnGaZrOx ternary oxides, which was combined with SAPO-34 to prepare a high-performance ZnGaZrOx/SAPO-34 tandem catalyst for CO2 hydrogenation to light olefins. By optimizing the Zn doping content, the ratio and mode of the two-phase composite, and the process conditions, the 3.5%ZnGaZrOx/SAPO-34 tandem catalyst showed excellent catalytic performance and good high-temperature inhibition of the reverse water-gas shift (RWGS) reaction. The catalyst achieved 26.6% CO2 conversion, 82.1% C2=-C4= selectivity and 11.8% light olefins yield. The ZnGaZrOx formed by introducing an appropriate amount of Zn into GaZrOx significantly enhanced the spillover H2 effect and also induced the generation of abundant oxygen vacancies to effectively promote the activation of CO2. Importantly, the RWGS reaction was also significantly suppressed at high temperatures, with the CO selectivity being only 46.1% at 390°C.

5.
Small ; : e2402700, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726773

ABSTRACT

Identity recognition as the first barrier of intelligent security plays a vital role, which is facing new challenges that are unable to meet the need of intelligent era due to low accuracy, complex configuration and dependence on power supply. Here, a finger temperature-driven intelligent identity recognition strategy is presented based on a thermogalvanic hydrogel (TGH) by actively discerning biometric characteristics of fingers. The TGH is a dual network PVA/Agar hydrogel in an H2O/glycerol binary solvent with [Fe(CN)6]3-/4- as a redox couple. Using a concave-arranged TGH array, the characteristics of users can be distinguished adequately even under an open environment by extracting self-existent intrinsic temperature features from five typical sites of fingers. Combined with machine learning, the TGH array can recognize different users with a high average accuracy of 97.6%. This self-powered identity recognition strategy is further applied to a smart lock, attaining a more reliable security protection from biometric characteristics than bare passwords. This work provides a promising solution for achieving better identity recognition, which has great advantages in intelligent security and human-machine interaction toward future Internet of everything.

6.
Medicine (Baltimore) ; 103(19): e38085, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728503

ABSTRACT

BACKGROUND: Modern medicine has no cure for the xerostomia caused by the early onset of Sjögren's syndrome. Mume Fructus is a common Chinese herbal medicine used to relieve xerostomia. However, the molecular mechanisms of the effects of Mume Fructus are unknown. In this study, network pharmacology and molecular docking were used to investigate the mechanisms of action of Mume Fructus on Sjögren's syndrome. MATERIALS AND METHOD: The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database was used to identify the active components and targets of Mume Fructus, and the UniProt database was used to identify the genes encoding these targets. SS-related targets were also identified from the GeneCards and OMIM databases. By finding the intersection of the targets of the compounds and the targets of Sjögren's syndrome, the predicted targets of Mume Fructus in the treatment of Sjögren's syndrome were obtained. Further investigation of the active compounds and their targets was carried out by constructing a network of "medicine-candidate compound-target-disease" using Cytoscape 3.7.2, the Protein-Protein Interaction network using the STRING database and Cytoscape 3.7.2, and key targets were identified by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis on R software. Finally, molecular docking was used to verify the affinity of the candidate compounds to the key targets. RESULTS: Quercetin, beta-sitosterol, and kaempferol in Mume Fructus interact with AKT1, IL-6, IL-1B, JUN, CASP3, and MAPK8. These results suggest that Mume Fructus exerts its therapeutic effects on the peripheral gland injury of Sjögren's syndrome and its secondary cardiovascular disease and tumorigenesis through anti-inflammatory, anti-oxidant, and anti-tumor pathways. CONCLUSION: With network pharmacology, this study systematically identified the main active components, targets, and specific mechanisms of the therapeutic effects of Mume Fructus on Sjögren's syndrome, providing both a theoretical basis and research direction for further investigations on Mume Fructus.


Subject(s)
Drugs, Chinese Herbal , Molecular Docking Simulation , Sjogren's Syndrome , Sjogren's Syndrome/drug therapy , Humans , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Cucumis melo , Network Pharmacology , Protein Interaction Maps , Medicine, Chinese Traditional/methods , Kaempferols/pharmacology , Kaempferols/therapeutic use
7.
Clin Cosmet Investig Dermatol ; 17: 931-940, 2024.
Article in English | MEDLINE | ID: mdl-38689755

ABSTRACT

Background: Previous observational studies have found that lichen sclerosus (LS) is associated with metabolic statuses, such as diabetes mellitus (DM) and body mass index (BMI). However, there are also some studies showing that LS is not related to DM and BMI. The mechanism behind observational results is still unclear. Therefore, the causality of this relationship remains unknown. In this study, a bidirectional two-sample Mendelian randomization (MR) was conducted to investigate the correlation between DM, BMI, and LS. Methods: The instrumental variables related to DM (including type 1 and type 2 diabetes), and BMI were identified from genome-wide association studies (GWAS) and a GWAS meta-analysis. The GWAS data for LS was from obtained the eighth edition of the FinnGen biological database released in 2022. Inverse variance weighted (IVW), weighted median, and MR-Egger methods were used to conduct a bidirectional two-sample MR analysis. Thereafter, the heterogeneity and horizontal pleiotropy were examined to determine whether the results were affected by a single-nucleotide polymorphism (SNP). Results: We found a lack of evidence for the causal association of DM, and BMI on LS in inverse variance weighted (type 1 diabetes, OR=0.97, 95% CI=0.91-1.04, p=0.429; type 2 diabetes, OR=0.91, 95% CI=0.82-1.00, p=0.0511; BMI, OR=0.92, 95% CI=0.73-1.15, p=0.4554). In the other direction, the results also showed that LS had no significant causal effect on DM and BMI. Conclusion: This MR analysis demonstrated no significant causal relationship between DM and BMI with LS in both directions, which contradicts previous observational studies reporting a positive association. Potential confounding factors may contribute to previously observed associations, and further research is necessary.

8.
Anal Chim Acta ; 1306: 342577, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692784

ABSTRACT

BACKGROUND: Detection methods based on aptamer probes have great potential and progress in the field of rapid detection of heavy metal ions. However, the unstable conformation of aptamers often results in poor sensitivity due to the dissociation of aptamer-target complex in real environments. RESULTS: In this study, we developed a locking aptamer probe and combined it with AgInZnS quantum dots for the first time to detect cadmium ions. When cadmium ions are combined with the probe, the cadmium ions are fixed in the core-locking position, forming a stable cavity structure. The limit of detection (LOD) was achieved at a concentration of 6.9 nmol L-1, with a broad detection range from 10 nmol L-1 to 1000 µmol L-1, and good recovery rates (92.93%-102.8 %) were achieved in aquatic product testing. The locking aptamer probe with stable conformation effectively enhances the stability of the aptamer-target complex and remains good stability in four buffer environments as well as a 600 mmol L-1 salt solution; it also exhibits good stability at pH 6.5-7.5 and temperatures ranging from 25 °C to 35 °C. SIGNIFICANCE: Overall, our study presented a general, simple, and cost-effective strategy for stabilizing aptamer conformations, and used for highly sensitive detection of cadmium ions.

9.
Article in English | MEDLINE | ID: mdl-38709613

ABSTRACT

Accurate decoding finger motor imagery is essential for fine motor control using EEG signals. However, decoding finger motor imagery is particularly challenging compared with ordinary motor imagery. This paper proposed a novel EEG decoding method of featuredependent frequency band selection, feature fusion, and ensemble learning (DSFE) for finger motor imagery. First, a feature-dependent frequency band selection method based on correlation coefficient (FDCC) was proposed to select feature-specific effective bands. Second, a feature fusion method was proposed to fuse different types of candidate features to produce multiple refined sets of decoding features. Finally, an ensemble model using the weighted voting strategy was proposed to make full use of these diverse sets of final features. The results on a public EEG dataset of five fingers motor imagery showed that the DSFE method is effective and achieves the highest decoding accuracy of 50.64%, which is 7.64% higher than existing studies using exactly the same data. The experiments further revealed that both the effective frequency bands of different subjects and the effective frequency bands of different types of features are different in finger motor imagery. Furthermore, compared with two-hand motor imagery, the effective decoding information of finger motor imagery is transferred to the lower frequency. The idea and findings in this paper provide a valuable perspective for understanding fine motor imagery in-depth.

10.
Compr Psychiatry ; 133: 152487, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38714144

ABSTRACT

BACKGROUND: The incidence of non-suicidal self-injury (NSSI) has been on the rise in recent years. Studies have shown that people with NSSI have difficulties in emotion regulation and cognitive control. In addition, some studies have investigated the cognitive emotion regulation of people with NSSI which found that they have difficulties in cognitive emotion regulation, but there was a lack of research on cognitive emotion regulation strategies and related neural mechanisms. METHODS: This study included 117 people with NSSI (age = 19.47 ± 5.13, male = 17) and 84 non-NSSI participants (age = 19.86 ± 4.14, male = 16). People with NSSI met the DSM-5 diagnostic criteria, and non-NSSI participants had no mental or physical disorders. The study collected all participants' data of Cognitive Emotion Regulation Questionnaire (CERQ) and functional magnetic resonance imaging (fMRI) to explore the differences in psychological performance and brain between two groups. Afterwards, Machine learning was used to select the found differential brain regions to obtain the highest correlation regions with NSSI. Then, Allen's Human Brain Atlas database was used to compare with the information on the abnormal brain regions of people with NSSI to find the genetic information related to NSSI. In addition, gene enrichment analysis was carried out to find the related pathways and specific cells that may have differences. RESULTS: The differences between NSSI participants and non-NSSI participants were as follows: positive refocusing (t = -4.74, p < 0.01); refocusing on plans (t = -4.11, p < 0.01); positive reappraisal (t = -9.22, p < 0.01); self-blame (t = 6.30, p < 0.01); rumination (t = 3.64, p < 0.01); catastrophizing (t = 9.10, p < 0.01), and blaming others (t = 2.52, p < 0.01), the precentral gyrus (t = 6.04, pFDR < 0.05) and the rolandic operculum (t = -4.57, pFDR < 0.05). Rolandic operculum activity was negatively correlated with blaming others (r = -0.20, p < 0.05). Epigenetic results showed that excitatory neurons (p < 0.01) and inhibitory neurons (p < 0.01) were significant differences in two pathways, "trans-synaptic signaling" (p < -log108) and "modulation of chemical synaptic transmission" (p < -log108) in both cells. CONCLUSIONS: People with NSSI are more inclined to adopt non-adaptive cognitive emotion regulation strategies. Rolandic operculum is also abnormally active. Abnormal changes in the rolandic operculum of them are associated with non-adaptive cognitive emotion regulation strategies. Changes in the excitatory and inhibitory neurons provide hints to explore the abnormalities of the neurological mechanisms at the cellular level of them. Trial registration number NCT04094623.

11.
Acta Paediatr ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714365

ABSTRACT

AIM: Few studies have assessed the association between weight changes from childhood to adulthood and cardiometabolic factors in adulthood. The aim of this study was to explore the relationships between weight changes from childhood to adulthood and cardiometabolic factors in adulthood using national Chinese data. METHODS: We included 649 participants from the China Health and Nutrition Survey from 1989 to 2009 and divided them into four groups by their body mass index from 6 to 37 years of age. They were selected using multistage random cluster sampling from 15 areas with large variations in economic and social development. Poisson regression models assessed associations between weight status changes and cardiometabolic outcomes in adulthood. RESULTS: The risk of multiple abnormal cardiometabolic outcomes in adulthood was increased in the 126 subjects with normal weight in childhood but overweight or obesity in adulthood and the 28 with obesity at both ages, compared to the 462 with normal weight at both ages. There was insufficient evidence to demonstrate that the 33 who had weight issues as children, but not as adults, had an increased risk. CONCLUSION: Being overweight or obese in both childhood and adulthood or during adulthood only increased the risk of abnormal cardiometabolic outcomes in adulthood. Larger studies need to investigate whether weight problems in childhood, but not adulthood, increase the risk.

12.
Stem Cells Dev ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801165

ABSTRACT

The therapeutic potential of autologous stem cell transplantation for heart repair diminishes in the elderly due to stem cell aging. Rejuvenating aged stem cells to enhance their protective effects on injured cardiomyocytes is crucial for aging patients with heart failure. In this study, we aimed to investigate whether NDNF over-expression improves the protective effect of aged stem cells for injured cardiomyocytes and explore the underlying mechanism. Human bone marrow was collected from both young and old patients, and BMSCs were cultured. Lentivirus expression vectors carrying NDNF genes were used to transfect aged BMSCs. Fatal hypoxia-induced injury in H9C2 cells served as an in vitro ischemia model. The conditioned medium from different BMSC groups was applied to assess the beneficial effects on hypoxia-induced damage in myocardial H9C2 cells. Results revealed that the conditioned medium of NDNF over-expressed old BMSCs increased H9C2 cell viability and reduced oxidative stress and apoptosis levels under fatal hypoxia. NDNF over-expressed old BMSCs exhibited an anti-apoptotic role by up-regulating the anti-apoptotic gene Bcl-2 and down-regulating the pro-apoptotic genes Bax. Additionally, the protective effects were mediated through the elevation of phosphorylated AKT. Our data support the promise of NDNF as a potential target to enhance the protective effects of autologous aged BMSCs on ischemic cardiomyocytes and then improve the curative effects of stem cell for ischemic heart injury in aged patients.

13.
Nat Ment Health ; 2(5): 593-604, 2024 May.
Article in English | MEDLINE | ID: mdl-38736646

ABSTRACT

Childhood and adolescent stress increase the risk of postpartum depression (PPD), often providing an increased probability of treatment refractoriness. Nevertheless, the mechanisms linking childhood/adolescent stress to PPD remain unclear. Our study investigated the longitudinal effects of adolescent stress on the hypothalamic-pituitary-adrenal (HPA) axis and postpartum behaviors in mice and humans. Adolescent social isolation prolonged glucocorticoid elevation, leading to long-lasting postpartum behavioral changes in female mice. These changes were unresponsive to current PPD treatments but improved with post-delivery glucocorticoid receptor antagonist treatment. Childhood/adolescent stress significantly impacted HPA axis dysregulation and PPD in human females. Repurposing glucocorticoid receptor antagonists for some cases of treatment-resistant PPD may be considered.

14.
Physiol Mol Biol Plants ; 30(4): 559-570, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38737325

ABSTRACT

Sweet cherry (Prunus avium L.) is one of the most economically important fruits in the world. However, severe fruit abscission has brought significant challenges to the cherry industry. To better understand the molecular regulation mechanisms underlying excessive fruit abscission in sweet cherry, the fruit abscission characteristics, the anatomical characteristics of the abscission zone (AZ), as well as a homeodomain-Leucine Zipper gene family member PavHB16 function were analyzed. The results showed that the sweet cherry exhibited two fruit abscission peak stages, with the "Brooks" cultivar demonstrating the highest fruit-dropping rate (97.14%). During these two fruit abscission peak stages, both the retention pedicel and the abscising pedicel formed AZs. but the AZ in the abscising pedicel was more pronounced. In addition, a transcription factor, PavHB16, was identified from sweet cherry. The evolutionary analysis showed that there was high homology between PavHB16 and AtHB12 in Arabidopsis. Moreover, the PavHB16 protein was localized in the nucleus. Overexpression of PavHB16 in Arabidopsis accelerated petal shedding. In the PavHB16-overexpressed lines, the AZ cells in the pedicel became smaller and denser, and the expression of genes involved in cell wall remodeling, such as cellulase 3 gene (AtCEL3), polygalacturonase 1 (AtPG1), and expandin 24(AtEXPA24) were upregulated. The results suggest that PavHB16 may promote the expression of genes related to cell wall remodeling, ultimately facilitating fruit abscission. In summary, this study cloned the sweet cherry PavHB16 gene and confirmed its function in regulating sweet cherry fruit abscission, which provided new data for further study on the fruit abscission mechanism. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01443-8.

15.
Small ; : e2401059, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775621

ABSTRACT

Nanozymes, as substitutes for natural enzymes, are constructed as cascade catalysis systems for biomedical applications due to their inherent catalytic properties, high stability, tunable physicochemical properties, and environmental responsiveness. Herein, a multifunctional nanozyme is reported to initiate cascade enzymatic reactions specific in acidic environments for resistant Helicobacter pylori (H. pylori) targeting eradication. The cobalt-coated Prussian blue analog based FPB-Co-Ch NPs displays oxidase-, superoxide dismutase-, peroxidase-, and catalase- mimicking activities that trigger • O 2 - ${\mathrm{O}}_2^ - {\bm{\ }}$ and H2O2 to supply O2, thereby killing H. pylori in the stomach. To this end, chitosan is modified on the surface to exert bacterial targeted adhesion and improve the biocompatibility of the composite. In the intestinal environment, the cascade enzymatic activities are significantly inhibited, ensuring the biosafety of the treatment. In vitro, sensitive and resistant strains of H. pylori are cultured and the antibacterial activity is evaluated. In vivo, murine infection models are developed and its success is confirmed by gastric mucosal reculturing, Gram staining, H&E staining, and Giemsa staining. Additionally, the antibacterial capacity, anti-inflammation, repair effects, and biosafety of FPB-Co-Ch NPs are comprehensively investigated. This strategy renders a drug-free approach that specifically targets and kills H. pylori, restoring the damaged gastric mucosa while relieving inflammation.

16.
Article in English | MEDLINE | ID: mdl-38776202

ABSTRACT

Graph convolutional network (GCN) based on the brain network has been widely used for EEG emotion recognition. However, most studies train their models directly without considering network dimensionality reduction beforehand. In fact, some nodes and edges are invalid information or even interference information for the current task. It is necessary to reduce the network dimension and extract the core network. To address the problem of extracting and utilizing the core network, a core network extraction model (CWGCN) based on channel weighting and graph convolutional network and a graph convolutional network model (CCSR-GCN) based on channel convolution and style-based recalibration for emotion recognition have been proposed. The CWGCN model automatically extracts the core network and the channel importance parameter in a data-driven manner. The CCSR-GCN model innovatively uses the output information of the CWGCN model to identify the emotion state. The experimental results on SEED show that: (1) the core network extraction can help improve the performance of the GCN model; (2) the models of CWGCN and CCSR-GCN achieve better results than the currently popular methods. The idea and its implementation in this paper provide a novel and successful perspective for the application of GCN in brain network analysis of other specific tasks. The code is available at https://github.com/ykhdu/CWGCN-CCSR-GCN.

17.
Biomater Sci ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808535

ABSTRACT

Expression of concern for 'A hypoxia-dissociable siRNA nanoplatform for synergistically enhanced chemo-radiotherapy of glioblastoma' by Yandong Xie, et al., Biomater. Sci., 2022, 10, 6791-6803, https://doi.org/10.1039/D2BM01145J.

18.
Proc Natl Acad Sci U S A ; 121(23): e2403557121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38809709

ABSTRACT

The Asian water tower (AWT) serves as the source of 10 major Asian river systems and supports the lives of ~2 billion people. Obtaining reliable precipitation data over the AWT is a prerequisite for understanding the water cycle within this pivotal region. Here, we quantitatively reveal that the "observed" precipitation over the AWT is considerably underestimated in view of observational evidence from three water cycle components, namely, evapotranspiration, runoff, and accumulated snow. We found that three paradoxes appear if the so-called observed precipitation is corrected, namely, actual evapotranspiration exceeding precipitation, unrealistically high runoff coefficients, and accumulated snow water equivalent exceeding contemporaneous precipitation. We then explain the cause of precipitation underestimation from instrumental error caused by wind-induced gauge undercatch and the representativeness error caused by sparse-uneven gauge density and the complexity of local surface conditions. These findings require us to rethink previous results concerning the water cycle, prompting the study to discuss potential solutions.

19.
Int J Biol Macromol ; 271(Pt 1): 132439, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38761907

ABSTRACT

This study explored the immunomodulatory impact and potential mechanisms on macrophages RAW264.7 using a purified macromolecular sulfate glycosaminoglycan (SBSG) from the swim bladder, whose structure was similar to chondroitin sulfate A. The results showed that SBSG at 0.25-1 mg/mL increased the viability and phagocytosis of RAW264.7 cells. Meanwhile, SBSG promoted the secretion of tumor necrosis factor α (TNF-α), interleukin 10 (IL-10), and nitric oxide (NO), as well as the production of reactive oxygen species (ROS). According to the RT-PCR and Western blot data, SBSG activated TLR4-nuclear factor kappa B (NF-κB) signaling pathways, which decreased the relative mRNA and protein levels of Toll-like receptor 4 (TLR4), IκB kinase ß (IKKß), NF-κB p65, and p-NF-κB p65. The molecular docking and molecular dynamic simulation findings revealed that the main binding force between TLR4 and SBSG was conventional hydrogen bond interaction, resulting in more stable ligand receptor complexes. In summary, SBSG exhibits significant immunomodulatory potential, similar to chondroitin sulfate C. The underlying molecular mechanism involved the binding of SBSG through hydrogen bonding to TLR4 receptors, triggering the NF-κB signaling pathway to downregulate the expression of related genes and proteins. This, in turn, regulated the secretion of various cytokines that were mediated by macrophages to exert the immunity of the body.

20.
ACS Appl Mater Interfaces ; 16(19): 24703-24711, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38710046

ABSTRACT

Cost-effective bulk scintillators with high density, large-area, and long-term stability are desirable for high-energy radiation detections. Conventional bulk polycrystalline or single-crystal scintillators are generally synthesized by high-temperature approaches, and it is challenging to realize simultaneously high detectivity/responsivity, spatial resolution, and rapid time response. Here, we report the cold sintering of bulk scintillators (at 90 °C) based on an "emitter-in-matrix" principle, in which emissive CsPbBr3 nanocrystals are embedded in a durable and transparent Cs4PbBr6 matrix. These bulk scintillators exhibit high light yield (33,800 photons MeV-1), low detection limit (79 nGyair s-1), fast decay time (9.8 ns), and outstanding spatial resolution of 8.9 lp mm-1 to X-ray radiation and an energy resolution of 19.3% for γ-ray (59.6 keV) detection. The composite scintillator also shows exceptional stability against environmental degradation and cyclic X-ray radiation. Our results demonstrate a cost-effective strategy for developing perovskite-based bulk transparent scintillators with exceptional performance and high radioluminescence stability for high-energy radiation detection and imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...