Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Anat Sci Educ ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853404

ABSTRACT

Dental anatomy education for dental technology students should be developed in alignment with digital dental laboratory practices. We hypothesized that a virtually assisted sketching-based dental anatomy teaching module could improve students' acquisition of skills essential for digital restoration design. The second-year dental technology curriculum included a novel virtual technology-assisted sketching-based module for dental anatomy education. Pre- and post-course assessments evaluated students' skill sets and knowledge bases. Computer-aided design (CAD) scores were analyzed after one year to assess how the skills students developed through this module impacted their subsequent CAD performance. Participants who undertook the dental sketching-based teaching module demonstrated significantly improved theoretical knowledge of dental anatomy, dental aesthetic perception, and spatial reasoning skills. A partial least squares structural equation model indicated that the positive effects of this module on subsequent CAD performance were indirectly mediated by dental aesthetic perception, spatial reasoning, and practice time. A virtually assisted sketching-based dental anatomy teaching module significantly improved students' acquisition of skills and knowledge and positively mediated dental technology students' CAD performance.

2.
Sci Rep ; 14(1): 5280, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38438541

ABSTRACT

The association between craniocervical posture and craniofacial structures in the various sagittal skeletal malocclusion during different growth stages has been the focus of intense interest in fields of orthodontics, but it has not been conclusively demonstrated. Thus, this study aimed to investigate the association between craniofacial morphology and craniocervical posture in patients with sagittal skeletal malocclusion during different growth periods. A total of 150 from a large pool of cephalograms qualified for the inclusion and exclusion were evaluated and classified into three groups according to the Cervical Vertebral Maturation (CVM) by examining the morphological modifications of the second through fourth cervical vertebrae, each group consisted of 50 cephalograms. In each growth period, for the comparison of head and cervical posture differences among various skeletal classes, the radiographs were further subdivided into skeletal Class I (0° < ANB < 5°, n = 16), skeletal Class II (ANB ≥ 5°, n = 18), and skeletal Class III (0° ≤ ANB, n = 16) on the basis of their ANB angle. There was no significant difference in gender (P > 0.05). Some variables were found to be significant during pubertal growth and later in patients with sagittal skeletal malocclusion (P < 0.05). Most indicators describing craniocervical posture were largest in skeletal Class II and smallest in skeletal Class III during the peak growth periods and later. Cervical inclination variables were greater in skeletal Class III than in skeletal Class II. Variables of craniofacial morphology and craniocervical posture are more correlated during the pubertal growth period and later in patients with sagittal skeletal malocclusion. A tendency is an indication of the close interrelationship that a more extended head was in skeletal Class II while a flexed head was in skeletal Class III. Nevertheless, with the considerations of some limitations involved in this study, further longitudinal studies with large samples are required to elucidate the relationship clearly.


Subject(s)
Malocclusion , Humans , Malocclusion/diagnostic imaging , Morphogenesis , Patients , Cervical Vertebrae/diagnostic imaging , Posture
3.
Int Immunopharmacol ; 130: 111796, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38452412

ABSTRACT

There is a reciprocal comorbid relationship between periodontitis and type 2 diabetes mellitus (T2DM). Recent studies have suggested that mitochondrial dysfunction (MD) could be the key driver underlying this comorbidity. The aim of this study is to provide novel understandings into the potential molecular mechanisms between MD and the comorbidity, and identify potential therapeutic targets for personalized clinical management. MD-related differentially expressed genes (MDDEGs) were identified. Enrichment analyses and PPI network analysis were then conducted. Six algorithms were used to explore the hub MDDEGs, and these were validated by ROC analysis and qRT-PCR. Co-expression and potential drug targeting analyses were then performed. Potential biomarkers were identified using LASSO regression. The immunocyte infiltration levels in periodontitis and T2DM were evaluated via CIBERSORTx and validated in mouse models. Subsequently, MD-related immune-related genes (MDIRGs) were screened by WGCNA. The in vitro experiment verified that MD was closely associated with this comorbidity. GO and KEGG analyses demonstrated that the connection between periodontitis and T2DM was mainly enriched in immuno-inflammatory pathways. In total, 116 MDDEGs, eight hub MDDEGs, and two biomarkers were identified. qRT-PCR revealed a distinct hub MDDEG expression pattern in the comorbidity group. Altered immunocytes in disease samples were identified, and their correlations were explored. The in vivo examination revealed higher infiltration levels of inflammatory immunocytes. The findings of this study provide insight into the mechanism underlying the gene-mitochondria-immunocyte network and provide a novel reference for future research into the function of mitochondria in periodontitis and T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Mitochondrial Diseases , Periodontitis , Animals , Mice , Algorithms , Biomarkers , Computational Biology
4.
J Imaging Inform Med ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393620

ABSTRACT

Orthodontically induced external root resorption (OIERR) is a common complication of orthodontic treatments. Accurate OIERR grading is crucial for clinical intervention. This study aimed to evaluate six deep convolutional neural networks (CNNs) for performing OIERR grading on tooth slices to construct an automatic grading system for OIERR. A total of 2146 tooth slices of different OIERR grades were collected and preprocessed. Six pre-trained CNNs (EfficientNet-B1, EfficientNet-B2, EfficientNet-B3, EfficientNet-B4, EfficientNet-B5, and MobileNet-V3) were trained and validated on the pre-processed images based on four different cross-validation methods. The performances of the CNNs on a test set were evaluated and compared with those of orthodontists. The gradient-weighted class activation mapping (Grad-CAM) technique was used to explore the area of maximum impact on the model decisions in the tooth slices. The six CNN models performed remarkably well in OIERR grading, with a mean accuracy of 0.92, surpassing that of the orthodontists (mean accuracy of 0.82). EfficientNet-B4 trained with fivefold cross-validation emerged as the final OIERR grading system, with a high accuracy of 0.94. Grad-CAM revealed that the apical region had the greatest effect on the OIERR grading system. The six CNNs demonstrated excellent OIERR grading and outperformed orthodontists. The proposed OIERR grading system holds potential as a reliable diagnostic support for orthodontists in clinical practice.

5.
Tob Induc Dis ; 21: 126, 2023.
Article in English | MEDLINE | ID: mdl-37808589

ABSTRACT

INTRODUCTION: Smoking is an important risk factor for inducing renal cell carcinoma (RCC), but its specific mechanism affecting the development of RCC remains to be elucidated. Chromophobe RCC (ChRCC) is a subtype of RCC. Many studies have shown smoking is closely associated with RCC occurrence and c-kit plays a critical role in the progression of RCC, however, few studies focus on ChRCC. This study investigated the molecular mechanism between smoking and the c-kit pathway in ChRCC. METHODS: Differentially expressed genes (DEGs) were obtained from The Cancer Genome Atlas (TCGA) in ChRCC and the expression of KIT in ChRCC was analyzed through the TCGA database combined with Gene Expression Omnibus (GEO) and oncomine databases. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and Protein Protein Interaction (PPI) network analysis were performed to explore the function of KIT and correlated DEGs as well as its co-expression genes in ChRCC. Finally, ChRCC patient samples were used to verify the effect of smoking on the c-kit expression. RESULTS: The results showed that KIT is one of the DEGs and plays a vital role in ChRCC tumorigenesis. Interestingly, the expression of c-kit in cancer tissues of 27 smoking patients was significantly higher than that of 25 non-smoking patients (p<0.05), which suggests smoking might enhance the expression of c-kit in ChRCC patients. CONCLUSIONS: Our results demonstrate that smoking might play a pivotal role in the ChRCC tumorigenesis via a pathway related to c-kit, and provided new insight into the relationship between smoking and the c-kit pathway in ChRCC.

6.
ACS Nano ; 17(6): 5686-5694, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36930244

ABSTRACT

An anterior cruciate ligament (ACL) tear is a common musculoskeletal injury with a high incidence. Traditional diagnosis employs magnetic response imaging (MRI), physical testing, or other clinical examination, which relies on complex and expensive medical instruments, or individual doctoral experience. Herein, we propose a wearable displacement sensing system based on a grating-structured triboelectric stretch sensor to diagnose the ACL injuries. The stretch sensor exhibits a high resolution (0.2 mm) and outstanding robustness (over 1,000,000 continuous operation cycles). This system is employed in clinical trial to diagnose ACL injuries. It measures the displacement difference between the affected leg and the healthy leg during Lachman test. And when such a difference is greater than 3 mm, the ACL is considered to be at risk for injury or tear. Compared with the gold standard of arthroscopy, the consistency rate of this wearable diagnostic system reached about 85.7%, which is higher than that of the Kneelax3 arthrometer (78.6%) with a large volume. This shows that the wearable system possesses the feasibility to supplement and improve existing arthrometers for facile diagnosing ACL injuries. It may take a promising step for wearable healthcare.


Subject(s)
Anterior Cruciate Ligament Injuries , Knee Injuries , Wearable Electronic Devices , Humans , Anterior Cruciate Ligament Injuries/diagnostic imaging , Knee Injuries/diagnosis , Knee Injuries/surgery , Arthroscopy/methods , Rupture , Magnetic Resonance Imaging/methods
7.
ACS Nano ; 16(11): 19096-19113, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36259964

ABSTRACT

Endoplasmic reticulum (ER) dysfunction is a potential contributor to the impaired repair capacity of periodontal tissue in diabetes mellitus (DM) patients. Restoring ER homeostasis is thus critical for successful regenerative therapy of diabetic periodontal tissue. Recent studies have shown that metformin can modulate DM-induced ER dysfunction, yet its mechanism remains unclear. Herein, we show that high glucose elevates the intracellular miR-129-3p level due to exocytosis-mediated release failure and subsequently perturbs ER calcium homeostasis via downregulating transmembrane and coiled-coil domain 1 (TMCO1), an ER Ca2+ leak channel, in periodontal ligament stem cells (PDLSCs). This results in the degradation of RUNX2 via the ubiquitination-dependent pathway, in turn leading to impaired PDLSCs osteogenesis. Interestingly, metformin could upregulate P2X7R-mediated exosome release and decrease intracellular miR-129-3p accumulation, which restores ER homeostasis and thereby rescues the impaired PDLSCs. To further demonstrate the in vivo effect of metformin, a nanocarrier for sustained local delivery of metformin (Met@HALL) in periodontal tissue is developed. Our results demonstrate that compared to controls, Met@HALL with enhanced cytocompatibility and pro-osteogenic activity could boost the remodeling of diabetic periodontal tissue in rats. Collectively, our findings unravel a mechanism of metformin in restoring cellular ER homeostasis, enabling the development of a nanocarrier-mediated ER targeting strategy for remodeling diabetic periodontal tissue.


Subject(s)
Diabetes Mellitus , Exocytosis , Metformin , Periodontium , Animals , Rats , Cell Differentiation , Endoplasmic Reticulum , Homeostasis , Metformin/pharmacology , MicroRNAs/metabolism , Osteogenesis
8.
PLoS One ; 17(10): e0276156, 2022.
Article in English | MEDLINE | ID: mdl-36282836

ABSTRACT

BACKGROUND: The association of head and cervical posture with malocclusion has been studied for many years. Despite extensively encouraging researches, no conclusive evidence has been reached for clinical application. OBJECTIVE: To identify the question "Does head and cervical posture correlate to malocclusion?", a systematic review and meta-analysis based on the available studies were carried out (PROSPERO registration number: CRD42022319742). METHODS: A search of PubMed, Embase, Cochrane Library, and the grey literature was performed without language restrictions. The study screening, data extraction, risk-of-bias evaluation and methodological quality assessment were performed by two independent investigators. When a disagreement arose, a third author was consulted. RESULTS: 6 original cross-sectional studies involving 505 participants were included, which were of moderate methodological quality. NL/VER in Class Ⅱ group and NL/CVT in Class Ⅲ group showed significant differences compared to Class Ⅰ group, but no significant differences were observed in most of the variables like NSL/VER, OPT/CVT, OPT/HOR, CVT/HOR, NSL/OPT, NSL/CVT, NL/OPT in Class Ⅱ and Ⅲ groups. CONCLUSIONS: The results suggested that the current research evidence is not sound enough to prove the association of head and cervical posture with sagittal malocclusion. Better controlled design and a larger sample size are required for clarifying this question in future study.


Subject(s)
Malocclusion , Humans , Cross-Sectional Studies , Neck , Posture
9.
Life (Basel) ; 12(6)2022 May 26.
Article in English | MEDLINE | ID: mdl-35743823

ABSTRACT

The ACE2 receptor, as the potential entrance site of SARS-CoV-2-affected cells, plays a crucial role in spreading infection. The DX600 peptide is a competitive inhibitor of ACE2. We previously constructed the 68Ga-labeled DOTA-DX600 (also known as 68Ga-HZ20) peptide and confirmed its ACE2 binding ability both in vitro and in vivo. In this research, we aimed to investigate the noninvasive mapping of ACE2 expression in fowl using 68Ga-HZ20 micro-PET. We chose pigeons as an animal model and first studied the administration method of 68Ga-HZ20 by direct site injection or intravenous injection. Then, the dynamic micro-PET scan of 68Ga-HZ20 was conducted at 0-40 min. Additionally, 18F-FDG was used for comparison. Finally, the pigeons were sacrificed, and the main organs were collected for further immunoPET and IHC staining. Micro PET/CT imaging results showed that 68Ga-HZ20 uptake was distributed from the heart at the preliminary injection to the kidneys, liver, stomach, and lungs over time, where the highest uptake was observed in the kidneys (SUVmax = 6.95, 20 min) and lung (SUVmax = 1.11, 20 min). Immunohistochemical experiments were carried out on its main organs. Compared to the SUVmax data, the IHC results showed that ACE2 was highly expressed in both kidneys and intestines, and the optimal imaging time was determined to be 20 min after injection through correlation analysis. These results indicated that 68Ga-HZ20 is a potential target molecule for SARS-CoV-2 in fowl, which is worthy of promotion and further study.

10.
Micromachines (Basel) ; 12(6)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200150

ABSTRACT

With the rapid development of the internet of things (IoT), sustainable self-powered wireless sensory systems and diverse wearable and implantable electronic devices have surged recently. Under such an opportunity, nanogenerators, which can convert continuous mechanical energy into usable electricity, have been regarded as one of the critical technologies for self-powered systems, based on the high sensitivity, flexibility, and biocompatibility of piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs). In this review, we have thoroughly analyzed the materials and structures of wearable and implantable PENGs and TENGs, aiming to make clear how to tailor a self-power system into specific applications. The advantages in TENG and PENG are taken to effectuate wearable and implantable human-oriented applications, such as self-charging power packages, physiological and kinematic monitoring, in vivo and in vitro healing, and electrical stimulation. This review comprehensively elucidates the recent advances and future outlook regarding the human body's self-powered systems.

11.
Eur J Pharmacol ; 898: 173994, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33675784

ABSTRACT

Disintegrin and metalloproteinase 28 (ADAM28) is a member of the disintegrin and metalloprotease domain (ADAM) family. It is associated with the growth and metastasis of various malignancies in vivo, but its role in gastric cancer remains unclear. The purpose of this study was to investigate the effect of ADAM28 derived from gastric cancer and endothelium on gastric cancer cells and its related mechanisms. In this study, Western blot analysis and q-PCR results showed that ADAM28 was up-regulated in gastric cancer cell lines. The TCGA database showed that patients with high ADAM28 expression had significantly shorter overall survival than those with low ADAM28 expression. By MTT analysis, wound healing assay, and flow cytometry, we found that overexpression/knockdown of ADAM28 expression in gastric cancer cells can regulate cell proliferation, apoptosis and migration in vitro. In addition, overexpression/knockdown of ADAM28 in human umbilical vein endothelial cells (HUVECs) in the upper ventricle can regulate the apoptosis of lower ventricular gastric cancer cells in the co-culture system. Furthermore, ELISA demonstrated that knockdown of ADAM28 from endothelial cells increased the expression of von Willebrand Factor (vWF) in the supernatant. We found that ADAM28 both from gastric cancer cells and HUVECs eliminated vWF-induced apoptosis of gastric cancer cells by cleaving vWF, and the addition of the vWF knockdown plasmid eliminated the increase of integrin ß3, p-TP53 and c-Casp3 caused by ADAM28 knockdown. In conclusion, ADAM28 from endothelium and gastric cancer may cleave vWF to eliminate vWF-induced apoptosis of gastric cancer cells and play an pro-metastasis effect.


Subject(s)
ADAM Proteins/metabolism , Apoptosis , Human Umbilical Vein Endothelial Cells/enzymology , Paracrine Communication , Stomach Neoplasms/enzymology , von Willebrand Factor/metabolism , ADAM Proteins/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Coculture Techniques , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Invasiveness , Signal Transduction , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
12.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 36(10): 871-876, 2020 Oct.
Article in Chinese | MEDLINE | ID: mdl-33148380

ABSTRACT

Objective To investigate the effects of inorganic arsenic exposure on the differentiation of renal CD4+T lymphocytes and the possible mechanism. Methods Female C57BL/6 mice were randomly divided into control group, (2.5, 5, 10) mg/kg NaAsO2 exposure groups, 10 mice in each group. As was administered once intragastrically for 24 hours, and control mice were treated with normal saline. Real-time fluorescence quantitative PCR was used to detect T helper type 1 (Th1) cell-specific transcription factor T-box expressed in T cells (T-bet) and IFN-γ, Th2 cell-specific transcription factor GATA-binding protein 3 (GATA3) and interleukin 4 (IL-4), Th17 cell-specific transcription factor retinoic acid related orphan nuclear receptor γt (ROR-γt) and cytokine IL-22, regulatory T cells (Tregs)-specific transcription factor forkhead box P3 (FOXP3) and cytokine transforming growth factor-ß (TGF-ß) mRNA levels. We used commercial kits to detect catalase (CAT) activity and total antioxidant capacity (T-AOC) in serum as well as renal malondialdehyde (MDA) and superoxide dismutase (SOD). Results Compared with the control group, the body mass, renal mass and kidney index of the mice in all arsenic-treated groups have no significant changes. The levels of the master transcription factors T-bet, GATA3, ROR-γt and FOXP3 as well as related cytokines IFN-γ, IL-4, IL-22 and TGF-ß of Th1, Th2, Th17 cells and Tregs decreased in the arsenic-treated groups. Serum CAT activity and T-AOC level in the arsenic-treated mice dropped greatly. In addition, arsenic markedly increased renal MDA level while decreased SOD activity. Conclusion Inorganic arsenic exposure can suppress renal T cell subpopulation function and induce renal oxidative injure.


Subject(s)
Arsenic/toxicity , Kidney/drug effects , Oxidative Stress , T-Lymphocytes, Regulatory/drug effects , Th1 Cells/drug effects , Th2 Cells/drug effects , Animals , Cytokines/metabolism , Female , Forkhead Transcription Factors/metabolism , GATA3 Transcription Factor/metabolism , Kidney/immunology , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...