Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Comput Biol Med ; 176: 108562, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38728993

ABSTRACT

We attempted to investigate the role of HOXB7 in tumor progression and evolution by means of an extensive computer screening analysis of various cancer types. We performed univariate Cox regression and Kaplan-Meier survival analyses to assess the impact of HOXB7 on overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in different types of cancer. Furthermore, we examined the relationship between HOXB7 and several clinical features: tumor microenvironment, immune regulatory genes, immune checkpoints, tumor mutational burden (TMB), and microsatellite instability (MSI). We performed gene set enrichment analysis to gain deeper insights into the potential molecular mechanisms of HOXB7, and validated our findings through functional assays in cells, including methyl thiazolyl tetrazolium cytotoxicity and Transwell invasion assays. HOXB7 expression was associated with different clinical characteristics in numerous malignancies. Higher HOXB7 expression was associated with worse OS, DSS, and PFI in some cancer types. In particular, HOXB7 expression was favorably associated with immune cell infiltration, immune regulatory genes, immunological checkpoints, TMB, and MSI in malignancies. Furthermore, we identified a strong link between copper death-associated gene expression and HOXB7 expression. According to the findings of this study, HOXB7 might serve as an appealing focus for tumor diagnosis and immunotherapy and a prospective indicator of prognosis.

2.
Transl Oncol ; 46: 101989, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38781861

ABSTRACT

Lung cancer has one of the highest mortality rates worldwide, with non-small-cell lung cancer (NSCLC) constituting approximately 85% of all cases. Demethylzeylasteral (DEM), extracted from Tripterygium wilfordii Hook F, exhibits notable anti-tumor properties. In this study, we revealed that DEM could effectively induce NSCLC cell apoptosis. Specifically, DEM can dose-dependently suppress the viability and migration of human NSCLC cells. RNA-seq analysis revealed that DEM regulates the P53-signaling pathway, which was further validated by assessing crucial proteins involved in this pathway. Biacore analysis indicated that DEM has high affinity with the P53 protein. The CDX model demonstrated DEM's anti-tumor actions. This work provided evidence that DEM-P53 interaction stabilizes P53 protein and triggers downstream anti-tumor activities. These findings indicate that DEM treatment holds promise as a potential therapeutic approach for NSCLC, which warrants further clinical assessment in patients with NSCLC.

3.
Chin J Nat Med ; 22(4): 318-328, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658095

ABSTRACT

Double cortin-like kinase 1 (DCLK1) exhibits high expression levels across various cancers, notably in human colorectal cancer (CRC). Diacerein, a clinically approved interleukin (IL)-1ß inhibitor for osteoarthritis treatment, was evaluated for its impact on CRC proliferation and migration, alongside its underlying mechanisms, through both in vitro and in vivo analyses. The study employed MTT assay, colony formation, wound healing, transwell assays, flow cytometry, and Hoechst 33342 staining to assess cell proliferation, migration, and apoptosis. Additionally, proteome microarray assay and western blotting analyses were conducted to elucidate diacerein's specific mechanism of action. Our findings indicate that diacerein significantly inhibits DCLK1-dependent CRC growth in vitro and in vivo. Through high-throughput proteomics microarray and molecular docking studies, we identified that diacerein directly interacts with DCLK1. Mechanistically, the suppression of p-STAT3 expression following DCLK1 inhibition by diacerein or specific DCLK1 siRNA was observed. Furthermore, diacerein effectively disrupted the DCLK1/STAT3 signaling pathway and its downstream targets, including MCL-1, VEGF, and survivin, thereby inhibiting CRC progression in a mouse model, thereby inhibiting CRC progression in a mouse model.


Subject(s)
Anthraquinones , Cell Proliferation , Colorectal Neoplasms , Doublecortin-Like Kinases , Intracellular Signaling Peptides and Proteins , Protein Serine-Threonine Kinases , STAT3 Transcription Factor , Signal Transduction , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Humans , Signal Transduction/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Mice , Cell Proliferation/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Anthraquinones/pharmacology , Cell Line, Tumor , Drug Repositioning , Apoptosis/drug effects , Cell Movement/drug effects , Mice, Inbred BALB C , Mice, Nude
4.
Front Cell Dev Biol ; 12: 1252064, 2024.
Article in English | MEDLINE | ID: mdl-38550378

ABSTRACT

N6-methyladenosine (m6A) is the most abundant chemical modification in eukaryotic cells. It is a post-transcriptional modification of mRNA, a dynamic reversible process catalyzed by methyltransferase, demethylase, and binding proteins. Ferroptosis, a unique iron-dependent cell death, is regulated by various cell metabolic events, including many disease-related signaling pathways. And different ferroptosis inducers or inhibitors have been identified that can induce or inhibit the onset of ferroptosis through various targets and mechanisms. They have potential clinical value in the treatment of diverse diseases. Until now, it has been shown that in several cancer diseases m6A can be involved in the regulation of ferroptosis, which can impact subsequent treatment. This paper focuses on the concept, function, and biological role of m6A methylation modification and the interaction between m6A and ferroptosis, to provide new therapeutic strategies for treating malignant diseases and protecting the organism by targeting m6A to regulate ferroptosis.

5.
Phytomedicine ; 128: 155538, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552432

ABSTRACT

OBJECTIVE: The effect of solamargine on lung adenocarcinoma and its effect on STAT1 signaling pathway mediated immune escape were studied through network pharmacology and in vitro and in vivo experiments. METHODS: The solamargine targets were screened using the TCMSP and the LUAD targets were screened using the GeneCard, OMIM, PharmGkb, TTD and DrugBank databases. PPI network analysis and target prediction were performed using GO and KEGG. Colony formation assay, EDU staining, wound healing, transwell assay, Hoechst and flow cytometry were used to detect the effects of solamargine on the proliferation, migration and apoptosis of LUAD. Western blotting (WB) and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to detect P-STAT1 and PD-L1 expression. And immunofluorescence was used to detect P-STAT1 expression. In vivo experiments, C57BL/6 mice were divided into control group, low concentration group, high concentration group, positive control group and combination group. Every other day, following seven consecutive doses, the size of the tumor was assessed. Finally, the expressions of P-STAT1, STAT1, PD-L1 and apoptosis index proteins were detected by WB. RESULTS: The anti-LUAD effect of solamargine was found by wound healing, colony formation assay, transwell assay, hoechst and EdU staining. The results of network pharmacological analysis showed that solamargine could suppress STAT1 expression level. Further enrichment assay of STAT1 showed that STAT1 was associated with immune-related pathways. In addition, molecular signal analysis by WB and RT-qPCR indicated that solamargine could reduce the expression levels of P-STAT1 and PD-L1 in a concentration-dependent manner. According to the results of in vivo assays, combination of solamargine and immune checkpoint inhibitors (ICIs) durvalumab could significantly inhibit the growth of Lewis transplanted tumors in C57BL/6 mice, and no toxic side effect was recoded. CONCLUSION: These results indicated that solamargine could inhibit the proliferation and promote the apoptosis of LUAD. It also could reduce the expression level of P-STAT1 protein and inhibit the expression level of PD-L1. At the same time, the combination with the ICIs can better block the expression of PD-L1 in cells, thereby inhibiting the immune escape pathway of tumor cells and achieving anti-tumor effects. This study proposed a novel combined therapeutic approach, involving the inhibition of STAT1 by solamargine in conjunction with ICIs.


Subject(s)
Adenocarcinoma of Lung , Apoptosis , B7-H1 Antigen , Lung Neoplasms , Mice, Inbred C57BL , STAT1 Transcription Factor , STAT1 Transcription Factor/metabolism , Animals , Lung Neoplasms/drug therapy , B7-H1 Antigen/metabolism , Humans , Apoptosis/drug effects , Adenocarcinoma of Lung/drug therapy , Mice , Cell Proliferation/drug effects , Signal Transduction/drug effects , Cell Line, Tumor , Cell Movement/drug effects , A549 Cells , Immune Checkpoint Inhibitors/pharmacology
6.
Eur Respir Rev ; 33(171)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38355149

ABSTRACT

Lung cancer is the leading cause of cancer-related deaths worldwide, and ∼85% of lung cancers are classified as nonsmall cell lung cancer (NSCLC). These malignancies can proliferate indefinitely, in part due to dysregulation of the cell cycle and the resulting abnormal cell growth. The specific activation of cyclin-dependent kinases 4 and 6 (CDK4/6) is closely linked to tumour proliferation. Approximately 80% of human tumours exhibit abnormalities in the cyclin D-CDK4/6-INK4-RB pathway. Specifically, CDK4/6 inhibitors either as monotherapy or combination therapy have been investigated in pre-clinical and clinical studies for the treatment of NSCLC, and promising results have been achieved. This review article focuses on research regarding the use of CDK4/6 inhibitors in NSCLC, including the characteristics and mechanisms of action of approved drugs and progress of pre-clinical and clinical research.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Cyclin-Dependent Kinase 4/metabolism , Cell Proliferation , Protein Kinase Inhibitors/adverse effects
7.
Inflammation ; 47(1): 209-226, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37864659

ABSTRACT

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a life-threatening disease without an effective drug at present. Fibroblast growth factor 21 (FGF21) was reported to be protective against inflammation in metabolic disease in recent studies. However, the role of FGF21 in ALI has been rarely investigated. In this study, it was found that the expression of FGF21 was markedly increased in lung tissue under lipopolysaccharide (LPS) stimulation in vivo, whereas it was decreased in lung epithelial cells under LPS stimulation in vitro. Therefore, our research aimed to elucidate the potential role of FGF21 in LPS-induced ALI and to detect possible underlying mechanisms. The results revealed that the deficiency of FGF21 aggravated pathological damage, inflammatory infiltration, and pulmonary function in LPS-induced ALI, while exogenous administration of FGF21 improved these manifestations. Moreover, through RNA sequencing and enrichment analysis, it was unveiled that FGF21 might play a protective role in LPS-induced ALI via JAK2/STAT3 signaling pathway. The therapeutic effect of FGF21 was weakened after additional usage of JAK2 activator in vivo. Further investigation revealed that FGF21 significantly inhibited STAT3 phosphorylation and impaired the nuclear translocation of STAT3 in vitro. In addition, the aggravation of inflammation caused by silencing FGF21 can be alleviated by JAK2 inhibitor in vitro. Collectively, these findings unveil a potent protective effect of FGF21 against LPS-induced ALI by inhibiting the JAK2/STAT3 pathway, implying that FGF21 might be a novel and effective therapy for ALI.


Subject(s)
Acute Lung Injury , Fibroblast Growth Factors , Respiratory Distress Syndrome , Humans , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/pathology , Janus Kinase 2/metabolism , Lipopolysaccharides/pharmacology , Lung/metabolism , Signal Transduction , STAT3 Transcription Factor/metabolism
8.
J Cancer ; 14(17): 3309-3320, 2023.
Article in English | MEDLINE | ID: mdl-37928418

ABSTRACT

Background: Non-small-cell lung cancer (NSCLC) is the most common histological subtype of lung cancer with significant morbidity and mortality rates worldwide. Cinobufagin, the primary component of Chansu and the major active ingredient of cinobufacini, has attracted widespread attention for its excellent anticancer effects, but its activity remains poorly characterized in NSCLC. Methods: The functions of cinobufagin treatment in anti-tumor was evaluated using various in vitro and in vivo assays. The change of STAT3 signaling by cinobufagin was analyzed using molecular docking, immunofluorescence technic and western blotting. Results: In vitro, we confirmed the inhibitory effect of cinobufagin on cell viability, proliferation, migration, epithelial-mesenchymal transition (EMT), as well as an apoptosis-inducing effect. The antitumor effects of cinobufagin were confirmed in vivo by measuring tumor growth in a mouse xenograft model. Cinobufagin was found to significantly inhibit the phosphorylation of signal transducer and activator of transcription 3 (STAT3) at tyrosine 705 (Y705) in a time- and concentration-dependent manner. Moreover, cinobufagin reversed IL-6-induced nuclear translocation of STAT3. Conclusions: Our study has demonstrated that cinobufagin exerts an antitumor effect in non-small-cell lung cancer by blocking STAT3 signaling, and cinobufagin is a promising candidate agent for NSCLC therapy.

9.
Eur Respir Rev ; 32(169)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37758272

ABSTRACT

Pulmonary hypertension (PH) is a progressive disease characterised by elevated pulmonary arterial pressure and right-sided heart failure. While conventional drug therapies, including prostacyclin analogues, endothelin receptor antagonists and phosphodiesterase type 5 inhibitors, have been shown to improve the haemodynamic abnormalities of patients with PH, the 5-year mortality rate remains high. Thus, novel therapies are urgently required to prolong the survival of patients with PH. Stem cell therapies, including mesenchymal stem cells, endothelial progenitor cells and induced pluripotent stem cells, have shown therapeutic potential for the treatment of PH and clinical trials on stem cell therapies for PH are ongoing. This review aims to present the latest preclinical achievements of stem cell therapies, focusing on the therapeutic effects of clinical trials and discussing the challenges and future perspectives of large-scale applications.


Subject(s)
Hypertension, Pulmonary , Humans , Hypertension, Pulmonary/therapy , Hypertension, Pulmonary/drug therapy , Endothelin Receptor Antagonists/therapeutic use , Cell- and Tissue-Based Therapy
10.
Aging (Albany NY) ; 15(16): 8258-8274, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37651362

ABSTRACT

BACKGROUND: The incidence of breast cancer (BC) worldwide has increased substantially in recent years. Epithelial-mesenchymal transition (EMT) refers to a crucial event impacting tumor heterogeneity. Although cinobufagin acts as an effective anticancer agent, the clinical use of cinobufagin is limited due to its strong toxicity. Acetyl-cinobufagin, a pre-drug of cinobufagin, was developed and prepared with greater efficacy and lower toxicity. METHODS: A heterograft mouse model using triple negative breast cancer (TNBC) cell lines, was used to evaluate the potency of acetyl-cinobufagin. Signal transducer and stimulator of transcription 3 (STAT3)/EMT involvement was investigated by gene knockout experiments using siRNA and Western blot analysis. RESULTS: Acetyl-cinobufagin inhibited proliferation, migration, and cell cycle S/G2 transition and promoted apoptosis in TNBC cells in vitro. In general, IL6 triggered the phosphorylation of the transcription factor STAT3 thereby activating the STAT3 pathway and inducing EMT. Mechanistically, acetyl-cinobufagin suppressed the phosphorylation of the transcription factor STAT3 and blocked the interleukin (IL6)-triggered translocation of STAT3 to the cell nucleus. In addition, acetyl-cinobufagin suppressed EMT in TNBC by inhibiting the STAT3 pathway. Experiments in an animal model of breast cancer clearly showed that acetyl-cinobufagin was able to reduce tumor growth. CONCLUSIONS: The findings of this study support the potential clinical use of acetyl-cinobufagin as a STAT3 inhibitor in TNBC adjuvant therapy.


Subject(s)
Bufanolides , Triple Negative Breast Neoplasms , Animals , Mice , Humans , Interleukin-6 , Phosphorylation , Disease Models, Animal , STAT3 Transcription Factor
11.
J Ethnopharmacol ; 316: 116704, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37257706

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Pulmonary fibrosis (PF) is a persistent and refractory illness accompanied by inflammation and fibrosis. Gracillin, a natural steroidal saponin, is one of the components of Dioscorea quinqueloba which has been used in herbal medicines for treating some inflammatory diseases. Therefore, it may be a potential drug candidate for PF management. AIM OF THE STUDY: This study aims to elucidate and verify the anti-pulmonary fibrosis effect of gracillin. METHODS: We established an in vivo model of PF by treatment of mice with bleomycin (BLM) and an in vitro model by treatment of NIH-3T3 cells with TGF-ß1. Pathological changes to the structure of lung tissue, pulmonary function, inflammatory exudation of bronchoalveolar lavage fluid (BALF) and deposition of collagen were detected in vivo, and extracellular matrix (ECM) deposition and migration were evaluated in vitro. The significance of gracillin on STAT3 phosphorylation and nuclear translocation were evaluated by western blotting, immunohistochemistry and immunofluorescence assays. The STAT3 transcriptional activity was quantified with a dual-luciferase reporter assay. Recovery experiments were performed by plasmid-directed overexpression of STAT3. RESULTS: We found that gracillin could improve pulmonary function, reduce lung inflammation and mitigate collagen deposition to ameliorate BLM-induced PF in mice. Gracillin also suppressed TGF-ß1-induced increases in ECM deposition biomarkers, including COL1A1, fibronectin, α-SMA, N-cad and vimentin, and repressed migration in NIH-3T3 cells. Additionally, gracillin suppressed the phosphorylation, nuclear translocation and transcriptional action of STAT3. Furthermore, the decreased ECM deposition and migration upon gracillin treatment were abrogated upon overexpression of STAT3 in NIH-3T3 cells. CONCLUSIONS: Gracillin protects against PF by inhibiting the STAT3 axis, providing a safe and efficacious approach to treating PF.


Subject(s)
Pulmonary Fibrosis , Transforming Growth Factor beta1 , Mice , Animals , Transforming Growth Factor beta1/pharmacology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Lung , Collagen , Bleomycin
12.
Respir Res ; 24(1): 76, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36915129

ABSTRACT

PIWI-interacting RNA (piRNA) is a class of recently discovered small non-coding RNA molecules with a length of 18-33 nt that interacts with the PIWI protein to form the piRNA/PIWI complex. The PIWI family is a subfamily of Argonaute (AGO) proteins that also contain the AGO family which bind to microRNA (miRNA). Recently studies indicate that piRNAs are not specific to in the mammalian germline, they are also expressed in a tissue-specific manner in a variety of human tissues and participated in various of diseases, such as cardiovascular, neurological, and urinary tract diseases, and are especially prevalent in malignant tumors in these systems. However, the functions and abnormal expression of piRNAs in respiratory tract diseases and their underlying mechanisms remain incompletely understood. In this review, we discuss current studies summarizing the biogenetic processes, functions, and emerging roles of piRNAs in respiratory tract diseases, providing a reference value for future piRNA research.


Subject(s)
MicroRNAs , Neoplasms , Respiratory Tract Diseases , Animals , Humans , Piwi-Interacting RNA , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Neoplasms/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Mammals/genetics , Mammals/metabolism
13.
Biomed Pharmacother ; 161: 114412, 2023 May.
Article in English | MEDLINE | ID: mdl-36827714

ABSTRACT

Lung cancer is the most common cause of cancer related deaths worldwide with the highest mortality rate. Non-small cell lung cancer (NSCLC) accounts for about 85 % of lung cancers. Mitochondrial methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is a bifunctional enzyme and is the most differentially expressed metabolic enzyme in various tumors including lung cancer. However, little is known about how MTHFD2 functions in NSCLC. Integrin-linked kinase (ILK) signaling plays key a role in tumor progression including metastasis, proliferation and migration. Here, we show that MTHFD2 inhibition results in suppression of cell growth, migration, invasion and epithelial-mesenchymal transition (EMT) in NSCLC. Microarray analysis suggests that MTHFD2 is positively associated with ILK signaling based on western blotting results. In addition, the phosphorylation of AMPKα plays an essential role in MTHFD2 regulation of ILK signaling. Further, the small-molecule compound C18 inhibits MTHFD2 with great efficiency. C18 blocks MTHFD2/ILK signaling pathway and restrains cell growth, migration, invasion, and EMT of NSCLC and induces apoptosis. In brief, our study found that the positive impact of MTHFD2 is mediated via ILK signaling pathway in NSCLC. Thus, blocking MTHFD2 represents a promising therapeutic strategy against NSCLC clinically.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Cell Line, Tumor , Signal Transduction , Cell Proliferation , Epithelial-Mesenchymal Transition , Cell Movement , Gene Expression Regulation, Neoplastic
14.
J Transl Med ; 20(1): 525, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36371217

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common lung cancer with high mortality across the world, but it is challenging to develop an effective therapy for NSCLC. Celastrol is a natural bioactive compound, which has been found to possess potential antitumor activity. However, the underlying molecular mechanisms of celastrol activity in NSCLC remain elusive. METHODS: Cellular function assays were performed to study the suppressive role of celastrol in human NSCLC cells (H460, PC-9, and H520) and human bronchial epithelial cells BEAS-2B. Cell apoptosis levels were analyzed by flow cytometry, Hoechst 33342, caspase-3 activity analysis, and western blot analysis. Intracellular reactive oxygen species (ROS) were analyzed by flow cytometry and fluorescence microscope. Expression levels of endoplasmic reticulum (ER) stress-related proteins and phosphorylated signal transducer and activator of transcription 3 (P-STAT3) were identified via western blot analysis. A heterograft model in nude mice was employed to evaluate the effect of celastrol in vivo. RESULTS: Celastrol suppressed the growth, proliferation, and metastasis of NSCLC cells. Celastrol significantly increased the level of intracellular ROS; thus, triggering the activation of the ER stress pathway and inhibition of the P-STAT3 pathway, and eventually leading to cell apoptosis, and the effects were reversed by the pre-treatment with N-Acetyl-L-cysteine (NAC). Celastrol also suppressed tumor growth in vivo. CONCLUSION: The outcomes revealed that celastrol plays a potent suppressive role in NSCLC in vitro and in vivo. Celastrol induces apoptosis via causing mitochondrial ROS accumulation to suppress the STAT3 pathway. Celastrol may have potential application prospects in the therapy of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mice , Animals , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , STAT3 Transcription Factor/metabolism , Reactive Oxygen Species/metabolism , Mice, Nude , Lung Neoplasms/pathology , Apoptosis , Cell Line, Tumor , Cell Proliferation
15.
Pharmacol Res ; 183: 106389, 2022 09.
Article in English | MEDLINE | ID: mdl-35934193

ABSTRACT

Lung adenocarcinoma (LUAD) is associated with poor prognosis. Identifying novel cancer targets and helpful therapeutic strategies remains a serious clinical challenge. This study detected differentially expressed genes in The Cancer Genome Atlas (TCGA) LUAD data collection. We also identified a predictive DNA biomarker, G protein-coupled receptor 37 (GPR37), which was verified as a prognostic biomarker with a critical role in tumor progression. In human LUAD specimens and microarray analyses, we determined that GPR37 was significantly upregulated and associated with a poor prognosis. GPR37 downregulation markedly inhibited the proliferation and migration of LUAD both in vitro and in vivo. Mechanistically, GPR37 could bind to CDK6, thereby facilitating tumor progression in LUAD by inducing cell cycle arrest at the G1 phase. GPR37 also facilitates tumorigenesis in xenograft tumors in vivo. High-throughput screening for GPR37-targeted drugs was performed using the Natural Products Library, which revealed the potential of Hypocrellin B to inhibit GPR37 and cell growth in LUAD. We demonstrated that Hypocrellin B suppressed LUAD cell proliferation and migration both in vitro and in vivo via GPR37 inhibition. Collectively, our findings reveal the role of GPR37 in LUAD progression and migration and the potential of GPR37 as a target for the treatment of LUAD. Thus, the specific inhibition of GPR37 by the natural product Hypocrellin B may possess the potential for the treatment of LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Animals , Biomarkers , Cell Proliferation/physiology , Cyclin-Dependent Kinase 6/genetics , Cyclin-Dependent Kinase 6/metabolism , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Precision Medicine , Prognosis , Receptors, G-Protein-Coupled
16.
Front Med (Lausanne) ; 9: 855640, 2022.
Article in English | MEDLINE | ID: mdl-35602478

ABSTRACT

Objectives: Patients with chronic obstructive pulmonary disease (COPD) have high morbidity and mortality, the opportunity to carry out a thoracic high-resolution CT (HRCT) scan may increase the possibility to identify the group at risk of disease. The aim of our study was to explore the differences in HRCT emphysema parameters, air trapping parameters, and lung density parameters between high and low-risk patients of COPD and evaluate their correlation with pulmonary function parameters. Methods: In this retrospective, single-center cohort study, we enrolled outpatients from the Physical Examination Center and Respiratory Medicine of The First Affiliated Hospital of Wenzhou Medical University. The patients who were ≥ 40 years-old, had chronic cough or sputum production, and/or had exposure to risk factors for the disease and had not reached the diagnostic criteria is considered people at risk of COPD. They were divided into low-risk group and high-risk group according to FEV1/FVC ≥ 80% and 80%>FEV1/FVC ≥ 70%. Data on clinical characteristics, clinical symptom score, pulmonary function, and HRCT were recorded. Results: 72 COPD high-risk patients and 86 COPD low-risk patients were enrolled in the study, and the air trapping index of left, right, and bilateral lungs of the high-risk group were higher than those of the low-risk group. However, the result of mean expiratory lung density was opposite. The emphysema index of left, right, and bilateral lungs were negatively correlated with FEV1/FVC (correlation coefficients were -0.33, -0.22, -0.26). Consistently, the air trapping index of left and right lungs and bilateral lungs were negatively correlated with FEV1/FVC (correlation coefficients were -0.33, -0.23, -0.28). Additionally, the mean expiratory lung density of left and right lungs and bilateral lungs were positively correlated with FEV1/FVC (correlation coefficients were 0.31, 0.25, 0.29). Conclusion: The emphysema index, air trapping index and the mean expiratory lung density shows significantly positive correlation with FEV1/FVC which can be used to assess the pulmonary function status of people at risk of COPD and provide a useful supplement for the early and comprehensive assessment of the disease.

17.
Phytomedicine ; 101: 154109, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35526322

ABSTRACT

BACKGROUND: Lung cancer is one of the most common types of malignant tumor. It has one of the highest morbidity and mortality rates worldwide, and approximately 85% of cases are non-small cell lung cancer (NSCLC). Clinically, several EGFR inhibitors have been used to treat NSCLC, but resistance can develop. Studies have shown that cross talk between signal transducer and activator of transcription 3 (STAT3) and epidermal growth factor receptor (EGFR) can mediate drug resistance. Acetylshikonin has obvious antitumor effects, but the mechanism of action is still unclear. PURPOSE: To analyze the antitumor activity of acetylshikonin in lung cancer and clarify its molecular mechanism. METHODS: Methyl thiazolyl tetrazolium (MTT), colony formation and 5-ethynyl-2'-deoxyuridine (EDU) assays were performed to examine the effects of acetylshikonin in inhibiting the proliferation of NSCLC cells (PC-9, H1975 and A549). Scratch wound and transwell assays were used to evaluate the migration and invasion of NSCLC cells. Flow cytometry was employed to determine whether acetylshikonin could induce apoptosis. Proteome sequencing was used to identify the targets of acetylshikonin. Immunofluorescence staining and western blotting were utilized to verify the inhibition of STAT3 and EGFR phosphorylation. A xenotransplantation model was established to evaluate the efficacy of acetylshikonin in nude mice. RESULTS: Our data demonstrated that acetylshikonin significantly decreased the survival rate of human NSCLC cells, increased the apoptotic rate and inhibited cell migration dose-dependently. Immunofluorescence staining and western blotting analyses revealed that acetylshikonin inhibited EGFR and STAT3 pathways. Acetylshikonin also inhibited tumor growth in a xenograft model better than inhibitors of EGFR and STAT3. CONCLUSION: Acetylshikonin has anti-cancer effects on NSCLC cells by inhibiting EGFR and STAT3, indicating that acetylshikonin may be a new antitumor drug to treat NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Anthraquinones , Apoptosis , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , ErbB Receptors/metabolism , Humans , Lung Neoplasms/pathology , Mice , Mice, Nude , STAT3 Transcription Factor/metabolism , Xenograft Model Antitumor Assays
18.
Front Cell Dev Biol ; 10: 847761, 2022.
Article in English | MEDLINE | ID: mdl-35465324

ABSTRACT

Embryonic lethal abnormal vision-like (ELAVL) proteins are RNA binding proteins that were originally discovered as indispensable regulators of the development and functioning of the nervous system. Subsequent studies have shown that ELAVL proteins not only exist in the nervous system, but also have regulatory effects in other tissues. ELAVL proteins have attracted attention as potential therapeutic targets because they stabilize multiple mRNAs by binding within the 3'-untranslated region and thus promote the development of tumors, including hepatocellular carcinoma, pancreatic cancer, ovarian cancer, breast cancer, colorectal carcinoma and lung cancer. Previous studies have focused on these important relationships with downstream mRNAs, but emerging studies suggest that ELAVL proteins also interact with non-coding RNAs. In this review, we will summarize the relationship of the ELAVL protein family with mRNA and non-coding RNA and the roles of ELAVL protein family members in a variety of physiological and pathological processes.

19.
Biochem Biophys Res Commun ; 609: 31-38, 2022 06 18.
Article in English | MEDLINE | ID: mdl-35413537

ABSTRACT

Lung cancer is a part of the commonest malignancies with the highest mortality rate in cancer-related deaths worldwide. Signal transducer and activator of transcription 3 (STAT3) and cyclin-dependent kinases (CDKs) are promising prognostic marker and therapeutic target in cancers. Our previous study has demonstrated the closely relationship between CDK9 and STAT3 in lung cancer. The inhibition of cell viability and migration in vitro by AT7519 were evaluated using methyl thiazolyl tetrazolium (MTT) assay, clonogenic assay and scratch wound model. The cell cycle analysis was evaluated using flow cytometry analysis and western blotting analysis. The apoptotic-induced efficiency was assessed by flow cytometry analysis, hoechst 33342 staining, caspase-3 activity analysis and western blotting analysis. The roles of STAT3 in AT7519 treatment for lung cancer were assessed by docking model and western blotting analysis. The patient-derived xenograft (PDX) models were used to investigate the effect of AT7519 in vivo. In this study, we found that AT7519, a CDK inhibitor, reduced the viability of lung cancer cells in vitro and strongly suppressed tumor growth in PDX model. AT7519 blocked cell cycle progression and induced apoptosis by inhibiting IL-6/STAT3 pathway. Taken together, AT519 exhibits great anti-tumor effects in lung cancer, and the mechanism was related closely to IL-6/STAT3 signaling pathway, which suggests the important roles of STAT3 in CDKs inhibitors. AT7519 might be a novel potential therapeutic agent based on this rationale.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line, Tumor , Cell Proliferation , Humans , Interleukin-6/metabolism , Lung Neoplasms/metabolism , Piperidines , Pyrazoles , STAT3 Transcription Factor/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...