Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2311961, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38461546

ABSTRACT

Optimizing the electrode/electrolyte interface structure is the key to realizing high-voltage Li-metal batteries (LMBs). Herein, a functional electrolyte is introduced to synergetically regulate the interface layer structures on the high-voltage cathode and the Li-metal anode. Saccharin sodium (NaSH) as a multifunctional electrolyte additive is employed in fluorinated solvent-based electrolyte (FBE) for robust interphase layer construction. On the one hand, combining the results of ex-situ techniques and in-situ electrochemical dissipative quartz crystal microbalance (EQCM-D) technique, it can be seen that the solid electrolyte interface (SEI) layer constructed by NaSH-coupled fluoroethylene carbonate (FEC) on Li-metal anode significantly inhibits the growth of lithium dendrites and improves the cyclic stability of the anode. On the other hand, the experimental results also confirm that the cathode-electrolyte interface (CEI) layer induced by NaSH-coupled FEC effectively protects the active materials of LiCoO2 and improves their structural stability under high-voltage cycling, thus avoiding the material rupture. Moreover, theoretical calculation results show that the addition of NaSH alters the desolvation behavior of Li+ and enhances the transport kinetics of Li+ at the electrode/electrolyte interface. In this contribution, the LiCoO2 ǁLi full cell containing FBE+NaSH results in a high capacity retention of 80% after 530 cycles with a coulombic efficiency of 99.8%.

2.
Phys Chem Chem Phys ; 23(27): 14628-14635, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34196637

ABSTRACT

Hydroxyl radicals (OH*) play a crucial role in atmospheric chemistry and biological processes. In this study, Born-Oppenheimer molecular dynamics simulations are performed under ambient conditions for a hydroxyl radical in a water nanodroplet containing 191 water molecules. Density functional theory calculations are performed at the BLYP-D3 level with some test calculations at the B3LYP-D3 level. In two 150 ps trajectories, either with OH* initially located in the interior region or at the surface of the water nanodroplet, the OH* radical ends up in the subsurface layer of the nanodroplet, which is different from the "surface preference" predicted from previous empirical force field simulations. The solvation structure of OH* contains fluctuating hydrogen bonds, as well as a two-center three-electron hemibond in some cases. The mobility of OH* is enhanced by hydrogen transfer, which has a free energy barrier of ∼4.6 kcal mol-1. The results presented in this study deepen our understanding of the structure and dynamics of OH* in aqueous solutions, especially around the air-water interface.

3.
Biochemistry ; 58(39): 4096-4105, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31496229

ABSTRACT

Two 15 µs all-atom simulations of the A2A adenosine receptor were obtained in a ternary mixture of cholesterol, saturated phosphatidylcholine lipids, and unsaturated phosphatidylcholine lipids. An analysis of local lipid solvation is reported on the basis of a Voronoi tessellation of the upper and lower leaflets, identifying first and second solvation shells. The local environments of both the inactive state and the partially active state of the receptor are significantly enriched with unsaturated chains but depleted of cholesterol and saturated chains, relative to the bulk membrane composition. In spite of the local depletion of cholesterol, the partially active receptor binds cholesterol at three locations during the entire simulation trajectory. These long-lived interactions represent the extreme of a very broad distribution of first-solvation shell lipid lifetimes, confounding sharp distinctions between lipid interactions. The broad distributions of lifetimes also make equilibrating the local lipid environment difficult, necessitating long simulation times.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/metabolism , Cholesterol/metabolism , Lipid Bilayers/metabolism , Phosphatidylcholines/metabolism , Receptor, Adenosine A2A/metabolism , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Binding Sites , Cholesterol/chemistry , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Phosphatidylcholines/chemistry , Protein Structure, Secondary , Receptor, Adenosine A2A/chemistry
4.
Biochim Biophys Acta Biomembr ; 1861(4): 760-767, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30629951

ABSTRACT

Cholesterol has been shown to modulate the activity of multiple G Protein-coupled receptors (GPCRs), yet whether cholesterol acts through specific interactions, indirectly via modifications to the membrane, or via both mechanisms is not well understood. High-resolution crystal structures of GPCRs have identified bound cholesterols; based on a ß2-adrenergic receptor (ß2AR) structure bound to cholesterol and the presence of conserved amino acids in class A receptors, the cholesterol consensus motif (CCM) was identified. Here in mammalian cells expressing the adenosine A2A receptor (A2AR), ligand dependent production of cAMP is reduced following membrane cholesterol depletion with methyl-beta-cyclodextrin (MßCD), indicating that A2AR signaling is dependent on cholesterol. In contrast, ligand binding is not dependent on cholesterol depletion. All-atom molecular simulations suggest that cholesterol interacts specifically with the CCM when the receptor is in an active state, but not when in an inactive state. Taken together, the data support a model of receptor state-dependent binding between cholesterol and the CCM, which could facilitate both G-protein coupling and downstream signaling of A2AR.


Subject(s)
Cholestyramine Resin , Molecular Dynamics Simulation , Receptor, Adenosine A2A , Signal Transduction , Cholestyramine Resin/chemistry , Cholestyramine Resin/metabolism , HEK293 Cells , Humans , Receptor, Adenosine A2A/chemistry , Receptor, Adenosine A2A/metabolism , beta-Cyclodextrins/chemistry
5.
Biophys J ; 113(11): 2415-2424, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29211995

ABSTRACT

By mole, cholesterol is the most abundant component of animal cell plasma membranes. Many membrane proteins have been shown to be functionally dependent on cholesterol, several of which have also been shown to bind cholesterol at well-defined locations on their membrane-facing surface. In this work, a combination of coarse-grained "Martini" and all-atom simulations are used to identify two, to our knowledge, new cholesterol-binding sites on the A2A adenosine receptor, a G-protein-coupled receptor that is a target for the treatment of Parkinson's disease. One of the sites is also observed to bind cholesterol in several recent, high-resolution crystal structures of the protein, and in the simulations, interacts with cholesterol only when bound to the inverse agonist ZM241385. Cataloguing cholesterol-binding sites is a vital step in the effort to understand cholesterol-dependent function of membrane proteins. Given that cholesterol content in plasma membranes varies with cell type and on administration of widely prescribed pharmaceuticals, such as statins, understanding cholesterol-dependent function is an important step toward exploiting membrane compositional variation for therapeutic purposes.


Subject(s)
Cholesterol/metabolism , Models, Molecular , Receptor, Adenosine A2A/chemistry , Receptor, Adenosine A2A/metabolism , Binding Sites , Cell Membrane/metabolism , Protein Binding , Protein Conformation
6.
J Phys Chem B ; 120(45): 11740-11750, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27780354

ABSTRACT

The umbrella sampling method has been used to evaluate the free energy profile for a large permeant moving through a lipid bilayer, represented using a coarse-grained simulation model, at and below its gel-fluid transition temperature. At the lipid transition temperature, determined to be 302 K for the MARTINI 2.0 model of DPPC, the permeation barrier for passage through an enclosed fluid domain embedded in a patch of gel was significantly lower than that for passage through a fluid stripe domain. In contrast, permeation through a fluid domain in a stripe geometry produced a free energy profile nearly identical to that of a gel-free fluid bilayer. In both cases, insertion of the permeant into a fluid domain coexisting with the gel phase led to a shift in phase composition, as lipids transitioned from fluid to gel to accommodate the area occupied by the permeant. In the case of the enclosed fluid domain, this transition produced a decrease in the length of the fluid-gel interface as the approximately circular fluid domain shrank. The observed decrease in the apparent permeation barrier, combined with an approximation for the change in interfacial length, enabled estimation of the interfacial line tension to be between 10 and 13 pN for this model. The permeation barrier was shown to drop even further in simulations performed at temperatures below the transition temperature. The results suggest a mechanism to explain the experimentally observed anomalous peak in the temperature-dependent permeability of lipid bilayers near their transition temperatures. The contribution of this mechanism toward the permeability of a gel phase containing a thermal distribution of fluid-phase domains is estimated using a simple statistical thermodynamic model.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Transition Temperature , Molecular Dynamics Simulation
7.
Langmuir ; 31(7): 2187-95, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25621817

ABSTRACT

When a range of lipid bilayers are melted to the disordered fluid phase from the (much less permeable) ordered gel phase, their permeability to a variety of permeants shows a peak at the transition temperature and drops off with increasing temperature, rather than just rising as melting proceeds. To explore this anomalous behavior, a simulated coarse-grained lipid membrane model that exhibits a phase transition upon expansion or compression was studied to determine how the permeation rate of a simple particle depends on the phase composition in the two-phase region and on particle size. The permeation rate and each phase's area fraction and area density could be directly calculated, along with the probability that the permeant would cross in either phase or in interfacial regions. For large permeants and system sizes, conditions could be found where permeability increases upon compression of the bilayer. Permeation was negligible in the gel phase and, in contrast to the predictions of the "leaky interface" hypothesis, was not enriched in interfacial regions. The anomalous effect could instead be attributed to an increase in the area per lipid of fluid-phase domains. This result motivated a model for the decrease in effective permeability barrier through fluid-phase domains arising from a decrease in the length of the gel/fluid interface at the midpoint of a permeation event.


Subject(s)
Lipid Bilayers/chemistry , Models, Chemical , Phase Transition , Emulsions/chemistry , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL
...