Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Parasitol ; 329: 110194, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749123

ABSTRACT

To investigate the therapeutic effect of toosendanin (TSN) against Eimeria tenella (E. tenella) in chicks. In this experiment, a chick model of artificially induced E. tenella infection was established. The anti-coccidial effect was investigated by treating different doses of TSN. A preliminary mechanism of action was conducted, using cecal cell apoptosis as a starting point. TSN at the concentration of 5 mg/kg BW showed the best effect against E. tenella with the ACI value of 164.35. In addition, TSN reduced pathological damage to cecal tissue, increased the secretion of glycogen and mucus in cecal mucosa, and enhanced the mucosal protective effect. It also elevated the levels of IFN-γ, IL-2, and IgG in serum, and raised the sIgA content in cecal tissue of infected chicks, thereby improving overall immune function. TSN was observed to promote the apoptosis of cecum tissue cells by TUNEL staining analysis. Immunohistochemistry analysis revealed that in TSN-treated groups, the expression of Caspase-3 and Bax was elevated, while the expression of Bcl-2 was reduced. TSN induced apoptosis in host cells by dose-dependently decreasing the Bcl-2/Bax ratio and upregulating Caspase-3 expression. In summary, TSN exhibited significant anticoccidial efficacy by facilitating apoptosis in host cecal cells, with the most pronounced effect observed at a dosage of 5 mg/kg body weight.


Subject(s)
Apoptosis , Cecum , Chickens , Coccidiosis , Eimeria tenella , Poultry Diseases , Animals , Eimeria tenella/drug effects , Apoptosis/drug effects , Cecum/parasitology , Coccidiosis/veterinary , Coccidiosis/drug therapy , Coccidiosis/parasitology , Poultry Diseases/parasitology , Poultry Diseases/drug therapy , Coccidiostats/pharmacology , Coccidiostats/therapeutic use
2.
Vet Parasitol ; 326: 110098, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38194736

ABSTRACT

Ponazuril, a novel antiprotozoal drug in the class of triazine, has shown a promising application on apicomplexan infections in poultry and livestock. However, the effect and mechanism of action of ponazuril against Eimeria tenella (E. tenella) are unclear. The efficacy against E. tenella was initially studied by administering different doses of ponazuril in drinking water. The treated stage and site of ponazuril on E. tenella were observed through ultrastructural and histopathological analyses. Chicks were orally treated with a dose of 15 mg/kg body weight of ponazuril at different endogenous stages of E. tenella post-infection. According to the clinical study, the values of anticoccidial indices (ACI) were 157.0, 162.3, 196.9, 194.5, and 190.9, respectively, when the ponazuril was administered in drinking water at doses of 5, 10, 20, 40, and 50 mg/L for two consecutive days after infection. Among them, the 20 mg/L ponazuril group showed the best anticoccidial effect, which was superior to that of the toltrazuril treatment group, with an ACI value of 191.7. Histological analysis indicated that ponazuril effectively relieved cecal lesions, and decreased the number of merozoites. Transmission electron micrographs (TEM) observed that merozoites became irregular in shape, and some apparent protrusions of the outer membrane were presented especially the second-generation merozoites. Additionally, abnormalities in the development of WFBI and WFBII in the macrogametocyte were observed, which may affect the formation of the ovule wall. Moreover, merozoites in the treated group showed uneven and marginalized chromatin and mitochondrial swelling. These results suggested ponazuril is a potential anticoccidial drug, providing information on the mechanism of anticoccidial effects.


Subject(s)
Coccidiosis , Coccidiostats , Drinking Water , Eimeria tenella , Poultry Diseases , Animals , Coccidiostats/pharmacology , Coccidiostats/therapeutic use , Coccidiosis/drug therapy , Coccidiosis/veterinary , Poultry Diseases/drug therapy , Triazines/pharmacology , Triazines/therapeutic use , Merozoites , Chickens , Treatment Outcome
3.
Vet Parasitol ; 319: 109940, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37182358

ABSTRACT

As a virulent and harmful protozoan, Eimeria tenella (E.tenella) causes harmful chicken coccidiosis, inducing high economic losses in the chicken industry. The management of the coccidial disease has been greatly hampered by drug resistance. Matrine is an active ingredient from Ku Shen (Radix Sophorae Flavescentis), a typical pesticide in chinese medicine. The aim of this study was to examine matrine's possible effectiveness in the treatment of coccidiosis and its protective function on the intestinal barrier. The anticoccidial index (ACI), the levels of anti-oxidant indexes, and secretory immunoglobulin A (sIgA) were detected. The levels of mRNA and protein expression of Occludin, ZO-1, and Claudin-1 were determined through quantitative real-time PCR (RT-qPCR) and immunohistochemistry (IHC) analysis. Matrine exhibited a moderate ACI value, and ACI values of 122.51 and 143.42 corresponded to 5 and 10 mg/kg of matrine, respectively. Compared to the infective control group, the expression of tight junction proteins significantly increased in the matrine-treatment group by RT-PCR and IHC analysis, which are essential for the mucosal immune system and the intestinal barrier. Besides, the matrine-treatment group showed a more complete intestinal structure, fewer bleeding spots, and coccidian by histopathology analysis. We also found that, matrine significantly enhanced the antioxidant ability and significantly increased the content of sIgA. Above all, matrine was considered an efficient drug against E.tenella by the anti-oxidant efficacy, and the ability to protect the composition and function of the intestinal barrier.


Subject(s)
Coccidiosis , Eimeria tenella , Poultry Diseases , Animals , Matrines , Antioxidants , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control , Coccidiosis/drug therapy , Coccidiosis/prevention & control , Coccidiosis/veterinary , Immunoglobulin A, Secretory/genetics , Immunoglobulin A, Secretory/pharmacology , Chickens
4.
Sci Rep ; 7: 45915, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28383568

ABSTRACT

Hepatocellular carcinoma (HCC) is the second leading cause of cancer related-death. As a major common regulator of numerous cancer-driving pathways and a unique therapeutic target, the prolyl isomerase Pin1 is overexpressed in a majority of HCCs, whereas the mechanism underlying Pin1 overexpression remains elusive. Here we find that miR-140-5p inhibits HCC by directly targeting Pin1 to block multiple cancer-driving pathways. Bioinformatics analysis, miRNA binding and functional assays identify that miR-140-5p directly interacts with the 3'UTR of Pin1 and inhibits Pin1 translation. Furthermore, like stable Pin1 knockdown, moderate overexpression of miR-140-5p not only eliminates Pin1, but also inhibits cells growth and metastasis. Importantly, these effects of miR-140-5p are largely rescued by reconstitution of Pin1. Moreover, miR-140-5p inhibits multiple Pin1-dependent cancer pathways and suppresses tumor growth in mice. The clinical significance of these findings has been substantiated by the demonstrations that miR-140-5p is frequently down-regulated and inversely correlated with Pin1 overexpression in HCC tissues and cell lines. Given prevalent miR-140-5p downregulation in other cancers and major impact of Pin1 overexpression on activating numerous cancer-driving pathways including global miRNA downregulation, the miR-140-5p/Pin1 axis may play a major role in tumorigenesis and offer promising therapeutic targets for HCC and other cancers.


Subject(s)
Carcinoma, Hepatocellular/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , MicroRNAs/genetics , NIMA-Interacting Peptidylprolyl Isomerase/genetics , 3' Untranslated Regions/genetics , Animals , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line , Cell Line, Tumor , Female , Hep G2 Cells , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Signal Transduction/genetics , Transplantation, Heterologous , Tumor Burden/genetics
5.
Neural Regen Res ; 11(9): 1431-1437, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27857745

ABSTRACT

13-Methyltetradecanoic acid can stabilize cell membrane and have anti-inflammatory, antioxidant and anti-apoptotic effects. Previous studies mainly focused on peripheral nerve injury, but seldom on the central nervous system. We investigated whether these properties of 13-methyltetradecanoic acid have a neuroprotective effect on focal cerebral ischemia/reperfusion injury, and detected the expression of basic fibroblast growth factor and vascular endothelial growth factor. This study established rat models of middle cerebral artery occlusion/reperfusion injury by ischemia for 2 hours and reperfusion for 24 hours. At the beginning of reperfusion, 13-methyltetradecanoic acid 10, 40 or 80 mg/kg was injected into the tail vein. Results found that various doses of 13-methyltetradecanoic acid effectively reduced infarct volume, mitigate cerebral edema, and increased the mRNA and protein expression of basic fibroblast growth factor and vascular endothelial growth factor at 24 hours of reperfusion. The effect was most significant in the 13-methyltetradecanoic acid 40 and 80 mg/kg groups. The findings suggest that 13-methyltetradecanoic acid can relieve focal ischemia/reperfusion injury immediately after reperfusion, stimulate the upregulation of basic fibroblast growth factor and vascular endothelial growth factor to exert neuroprotective effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...