Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Cell ; 4(6): 467-74, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23702687

ABSTRACT

Cell autolysis plays important physiological roles in the life cycle of clostridial cells. Understanding the genetic basis of the autolysis phenomenon of pathogenic Clostridium or solvent producing Clostridium cells might provide new insights into this important species. Genes that might be involved in autolysis of Clostridium acetobutylicum, a model clostridial species, were investigated in this study. Twelve putative autolysin genes were predicted in C. acetobutylicum DSM 1731 genome through bioinformatics analysis. Of these 12 genes, gene SMB_G3117 was selected for testing the in tracellular autolysin activity, growth profile, viable cell numbers, and cellular morphology. We found that overexpression of SMB_G3117 gene led to earlier ceased growth, significantly increased number of dead cells, and clear electrolucent cavities, while disruption of SMB_G3117 gene exhibited remarkably reduced intracellular autolysin activity. These results indicate that SMB_G3117 is a novel gene involved in cellular autolysis of C. acetobutylicum.


Subject(s)
Clostridium acetobutylicum/genetics , Genes, Bacterial , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Autolysis/genetics , Clostridium acetobutylicum/metabolism , Computational Biology , N-Acetylmuramoyl-L-alanine Amidase/genetics , Temperature
2.
Adv Biochem Eng Biotechnol ; 128: 85-100, 2012.
Article in English | MEDLINE | ID: mdl-22167047

ABSTRACT

China initiated its acetone-butanol-ethanol (ABE) industry in the 1950s; it peaked in the 1980s, and ended at the end of the last century owing to the development of more competitive petrochemical pathways. However, driven by the high price of crude oil and environmental concerns raised by the over-consumption of petrochemical products, biofuels and bio-based chemicals including butanol have garnered global attention again. Currently, butanol produced from ABE fermentation is mainly used as an industrial solvent or a platform chemical for several bulk derivatives, and is also believed to be a potential biofuel. A number of plants have been built or rebuilt in recent years in China for butanol production with the ABE process. Chinese researchers also show great interest in the improvement of the production strains and corresponding processes. They have applied conventional mutagenesis methods to improve butanol-producing strains such as the Clostridium acetobutylicum mutant strains EA2018 (butanol ratio of 70%) and Rh8 (butanol tolerance of 19 g/L). The omics technologies, such as genome sequencing, proteomic and transcriptomic analysis, have been adapted to elucidate the characteristics of different butanol-producing bacteria. Based on the group II intron method, the genetic manipulation system of C. acetobutylicum was greatly improved, and some successful engineering strains were developed. In addition, research in China also covers the downstream processes. This article reviews up-to-date progress on biobutanol production in China.


Subject(s)
Biofuels , Butanols/metabolism , Acetone/metabolism , China , Clostridium acetobutylicum/genetics , Clostridium acetobutylicum/metabolism , Ethanol/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...