Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Brain Behav Immun ; 110: 310-321, 2023 05.
Article in English | MEDLINE | ID: mdl-36940753

ABSTRACT

Recent evidence suggests that there is a link between neurodevelopmental disorders, such as attention-deficit hyperactivity disorder (ADHD), and the gut microbiome. However, most studies to date have had low sample sizes, have not investigated the impact of psychostimulant medication, and have not adjusted for potential confounders, including body mass index, stool consistency and diet. To this end, we conducted the largest, to our knowledge, fecal shotgun metagenomic sequencing study in ADHD, with 147 well-characterized adult and child patients. For a subset of individuals, plasma levels of inflammatory markers and short-chain fatty acids were also measured. In adult ADHD patients (n = 84), compared to controls (n = 52), we found a significant difference in beta diversity both regarding bacterial strains (taxonomic) and bacterial genes (functional). In children with ADHD (n = 63), we found that those on psychostimulant medication (n = 33 on medication vs. n = 30 not on medication) had (i) significantly different taxonomic beta diversity, (ii) lower functional and taxonomic evenness, (iii) lower abundance of the strain Bacteroides stercoris CL09T03C01 and bacterial genes encoding an enzyme in vitamin B12 synthesis, and (iv) higher plasma levels of vascular inflammatory markers sICAM-1 and sVCAM-1. Our study continues to support a role for the gut microbiome in neurodevelopmental disorders and provides additional insights into the effects of psychostimulant medication. However, additional studies are needed to replicate these findings and examine causal relationships with the disorder.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Central Nervous System Stimulants , Gastrointestinal Microbiome , Humans , Child , Adult , Attention Deficit Disorder with Hyperactivity/drug therapy , Central Nervous System Stimulants/therapeutic use , Diet , Feces
2.
Nutrients ; 15(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36904292

ABSTRACT

Synbiotic 2000, a pre + probiotic, reduced comorbid autistic traits and emotion dysregulation in attention deficit hyperactivity disorder (ADHD) patients. Immune activity and bacteria-derived short-chain fatty acids (SCFAs) are microbiota-gut-brain axis mediators. The aim was to investigate Synbiotic 2000 effects on plasma levels of immune activity markers and SCFAs in children and adults with ADHD. ADHD patients (n = 182) completed the 9-week intervention with Synbiotic 2000 or placebo and 156 provided blood samples. Healthy adult controls (n = 57) provided baseline samples. At baseline, adults with ADHD had higher pro-inflammatory sICAM-1 and sVCAM-1 and lower SCFA levels than controls. Children with ADHD had higher baseline sICAM-1, sVCAM-1, IL-12/IL-23p40, IL-2Rα, and lower formic, acetic, and propionic acid levels than adults with ADHD. sICAM-1, sVCAM-1, and propionic acid levels were more abnormal in children on medication. Synbiotic 2000, compared to placebo, reduced IL-12/IL-23p40 and sICAM-1 and increased propionic acid levels in children on medication. SCFAs correlated negatively with sICAM-1 and sVCAM-1. Preliminary human aortic smooth-muscle-cell experiments indicated that SCFAs protected against IL-1ß-induced ICAM-1 expression. These findings suggest that treatment with Synbiotic 2000 reduces IL12/IL-23p40 and sICAM-1 and increases propionic acid levels in children with ADHD. Propionic acid, together with formic and acetic acid, may contribute to the lowering of the higher-than-normal sICAM-1 levels.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Synbiotics , Humans , Adult , Child , Propionates , Fatty Acids, Volatile , Biomarkers , Interleukin-12
3.
J Psychiatr Res ; 156: 36-43, 2022 12.
Article in English | MEDLINE | ID: mdl-36228390

ABSTRACT

Short-chain fatty acids (SCFAs), produced during bacterial fermentation, have been shown to be mediators in the microbiota-gut-brain axis. This axis has been proposed to influence psychiatric symptoms seen in attention deficit hyperactivity disorder (ADHD). However, there is no report of plasma SCFA concentrations in ADHD. The aim of this study was to explore the plasma concentrations of SCFAs in children and adults with ADHD and the possible factors that could influence those levels. We collected data on age group, sex, serum vitamin D levels, delivery mode, body mass index, diet, medication and blood samples from 233 ADHD patients and 36 family-related healthy controls. The concentrations of SCFAs and the intermediary metabolite succinic acid, were measured using liquid chromatography-mass spectrometry. Adults with ADHD had lower plasma concentrations of formic, acetic, propionic and succinic acid than their healthy family members. When adjusting for SCFA-influential factors among those with ADHD, children had lower concentrations of formic, propionic and isovaleric acid than adults, and those who had more antibiotic medications during the last 2 years had lower concentrations of formic, propionic and succinic acid. When adjusting for antibiotic medication, we found that among children, those currently on stimulant medication had lower acetic and propionic acid levels, and adults with ADHD had lower formic and propionic acid concentrations than adult healthy family members. In all, our findings show lower-than-normal plasma concentrations of SCFAs in ADHD explained in-part by antibiotic medication, age and stimulant medication. Whether or not this is of clinical significance is yet to be explored.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Propionates , Child , Humans , Family , Succinates
4.
J Clin Med ; 11(5)2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35268382

ABSTRACT

Mechanism-based diagnosis and therapies for chronic pain are lacking. However, bio-psycho-social interventions such as interdisciplinary multimodal rehabilitation programs (IPRPs) have shown to be relatively effective treatments. In this context we aim to investigate the effects of IPRP on the changes in levels of bioactive lipids and telomerase activity in plasma, and if these changes are associated with changes in pain intensity and psychological distress. This exploratory study involves 18 patients with complex chronic pain participating in an IPRP. Self-reports of pain, psychological distress, physical activity, and blood samples were collected before the IPRP and at a six-month follow-up. Levels of arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), palmitoylethanolamide (PEA), oleoylethanolamide (OEA), stearoylethanolamide (SEA), and telomerase activity were measured. Pain intensity was decreased, and SEA levels were increased at the six-month follow up. A significant correlation existed between changes in SEA levels and pain intensity. AEA levels, were inversely correlated with physical activity. Furthermore, 2-AG and telomerase activity was significantly correlated at the six-month follow-up. This study confirms that IPRP is relatively effective for reduction in chronic pain. Changes in SEA were correlated with changes in pain intensity, which might indicate that SEA changes reflect the pain reduction effects of IPRP.

5.
Eur Neuropsychopharmacol ; 41: 118-131, 2020 12.
Article in English | MEDLINE | ID: mdl-33160793

ABSTRACT

Peripheral immune activation can influence neurodevelopment and is increased in autism, but is less explored in attention deficit hyperactivity disorder (ADHD). Patients with ADHD often display comorbid autism traits and gastrointestinal (GI) symptoms. Plasma protein levels of two acute phase reactants, C-reactive protein (CRP) and serum amyloid A (SAA), and two endothelial adhesion molecules, soluble intercellular adhesion molecule 1 (sICAM-1) and soluble vascular cell adhesion molecule 1 (sVCAM-1), which share important roles in inflammation, were analyzed in 154 patients with ADHD and 61 healthy controls. Their associations with ADHD diagnosis, severity, medication and comorbid autistic symptoms, emotion dysregulation and GI symptoms were explored. The ADHD patients had increased levels of sICAM-1 and sVCAM-1 compared to healthy controls (p = 8.6e-05, p = 6.9e-07, respectively). In children with ADHD, the sICAM-1 and sVCAM-1 levels were higher among those with ADHD medication than among children (p = 0.0037, p = 0.0053, respectively) and adults (p = 3.5e-09, p = 1.9e-09, respectively) without ADHD medication. Among the adult ADHD patients, higher sICAM-1 levels were associated with increased comorbid autistic symptoms in the domains attention to detail and imagination (p = 0.0081, p = 0.00028, respectively), and higher CRP levels were associated with more GI symptoms (p = 0.014). sICAM-1 and sVCAM-1 levels were highly correlated with each other, and so were CRP and SAA levels. To conclude, vascular inflammatory activity may be overrepresented in ADHD, with elevated sICAM-1 and sVCAM-1 levels and this may in children be a consequence of current ADHD medication, and in adults relate to increased comorbid autistic symptoms. Replication is warranted.


Subject(s)
Attention Deficit Disorder with Hyperactivity/blood , Attention Deficit Disorder with Hyperactivity/epidemiology , Inflammation Mediators/blood , Adolescent , Adult , Anti-Bacterial Agents/therapeutic use , Attention Deficit Disorder with Hyperactivity/drug therapy , Autistic Disorder/blood , Autistic Disorder/drug therapy , Autistic Disorder/epidemiology , Biomarkers/blood , Case-Control Studies , Central Nervous System Stimulants/therapeutic use , Child , Child, Preschool , Comorbidity , Female , Gastrointestinal Diseases/blood , Gastrointestinal Diseases/drug therapy , Gastrointestinal Diseases/epidemiology , Humans , Male , Melatonin/therapeutic use , Middle Aged , Sweden/epidemiology , Young Adult
6.
Brain Behav Immun ; 89: 9-19, 2020 10.
Article in English | MEDLINE | ID: mdl-32497779

ABSTRACT

Some prebiotics and probiotics have been proposed to improve psychiatric symptoms in children with autism. However, few studies were placebo-controlled, and there is no study on persons with an attention deficit hyperactivity disorder (ADHD) diagnosis. Our aim was to study effects of Synbiotic 2000 on psychiatric symptoms and functioning in children and adults with ADHD without an autism diagnosis. Children and adults (n = 182) with an ADHD diagnosis completed the nine weeks randomized double-blind parallel placebo-controlled trial examining effects of Synbiotic 2000 on the primary endpoints ADHD symptoms, autism symptoms and daily functioning, and the secondary endpoint emotion regulation, measured using the questionnaires SNAP-IV, ASRS, WFIRS, SCQ, AQ and DERS-16. Levels at baseline of plasma C-reactive protein and soluble vascular cell adhesion molecule-1 (sVCAM-1), central to leukocyte-endothelial cell adhesion facilitating inflammatory responses in tissues, were measured using Meso Scale Discovery. Synbiotic 2000 and placebo improved ADHD symptoms equally well, and neither active treatment nor placebo had any statistically significant effect on functioning or sub-diagnostic autism symptoms. However, Synbiotic 2000, specifically, reduced sub-diagnostic autism symptoms in the domain restricted, repetitive and stereotyped behaviors in children, and improved emotion regulation in the domain of goal-directed behavior in adults. In children with elevated sVCAM-1 levels at baseline as well as in children without ADHD medication, Synbiotic 2000 reduced both the total score of autism symptoms, and the restricted, repetitive and stereotyped behaviors. In adults with elevated sVCAM-1 at baseline, Synbiotic 2000 significantly improved emotion regulation, both the total score and four of the five subdomains. To conclude, while no definite Synbiotic 2000-specific effect was detected, the analysis of those with elevated plasma sVCAM-1 levels proposed a reduction of autism symptoms in children and an improvement of emotion regulation in adults with ADHD. Trial registration number: ISRCTN57795429.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Synbiotics , Adult , Attention Deficit Disorder with Hyperactivity/therapy , Child , Double-Blind Method , Humans , Surveys and Questionnaires , Treatment Outcome
7.
J Neurochem ; 154(6): 635-646, 2020 09.
Article in English | MEDLINE | ID: mdl-31784978

ABSTRACT

Short-chain fatty acids (SCFAs) are a group of fatty acids predominantly produced during the fermentation of dietary fibers by the gut anaerobic microbiota. SCFAs affect many host processes in health and disease. SCFAs play an important role in the 'gut-brain axis', regulating central nervous system processes, for example, cell-cell interaction, neurotransmitter synthesis and release, microglia activation, mitochondrial function, and gene expression. SCFAs also promote the growth of neurospheres from human neural stem cells and the differentiation of embryonic stem cells into neural cells. It is plausible that maternally derived SCFAs may pass the placenta and expose the fetus at key developmental periods. However, it is unclear how SCFA exposure at physiological levels influence the early-stage neural cells. In this study, we explored the effect of SCFAs on the growth rate of human neural progenitor cells (hNPCs), generated from human embryonic stem cell line (HS980), with IncuCyte live-cell analysis system and immunofluorescence. We found that physiologically relevant levels (µM) of SCFAs (acetate, propionate, butyrate) increased the growth rate of hNPCs significantly and induced more cells to undergo mitosis, while high levels (mM) of SCFAs had toxic effects on hNPCs. Moreover, no effect on apoptosis was observed in physiological-dose SCFA treatments. In support, data from q-RT PCR showed that SCFA treatments influenced the expression of the neurogenesis, proliferation, and apoptosis-related genes ATR, BCL2, BID, CASP8, CDK2, E2F1, FAS, NDN, and VEGFA. To conclude, our results propose that SCFAs regulates early neural system development. This might be relevant for a putative 'maternal gut-fetal brain-axis'. Cover Image for this issue: doi: 10.1111/jnc.14761.


Subject(s)
Fatty Acids, Volatile/pharmacology , Neural Stem Cells/drug effects , Apoptosis/drug effects , Apoptosis Regulatory Proteins/genetics , Cell Division/drug effects , Cell Line , Cell Proliferation/drug effects , Gastrointestinal Microbiome , Humans , Neurogenesis/drug effects , Neurogenesis/genetics
8.
Transl Psychiatry ; 9(1): 340, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31852887

ABSTRACT

Telomere attrition is a hallmark of cellular aging and shorter telomeres have been reported in mood and anxiety disorders. Telomere shortening is counteracted by the enzyme telomerase and cellular protection is also provided by the antioxidant enzyme glutathione peroxidase (GPx). Here, telomerase, GPx, and telomeres were investigated in 46 social anxiety disorder (SAD) patients in a within-subject design with repeated measures before and after cognitive behavioral therapy. Treatment outcome was assessed by the Liebowitz Social Anxiety Scale (self-report), administered three times before treatment to control for time and regression artifacts, and posttreatment. Venipunctures were performed twice before treatment, separated by 9 weeks, and once posttreatment. Telomerase activity and telomere length were measured in peripheral blood mononuclear cells and GPx activity in plasma. All patients contributed with complete data. Results showed that social anxiety symptom severity was significantly reduced from pretreatment to posttreatment (Cohen's d = 1.46). There were no significant alterations in telomeres or cellular protection markers before treatment onset. Telomere length and telomerase activity did not change significantly after treatment, but an increase in telomerase over treatment was associated with reduced social anxiety. Also, lower pretreatment telomerase activity predicted subsequent symptom improvement. GPx activity increased significantly during treatment, and increases were significantly associated with symptom improvement. The relationships between symptom improvement and putative protective enzymes remained significant also after controlling for body mass index, sex, duration of SAD, smoking, concurrent psychotropic medication, and the proportion of lymphocytes to monocytes. Thus, indices of cellular protection may be involved in the therapeutic mechanisms of psychological treatment for anxiety.


Subject(s)
Cognitive Behavioral Therapy , Glutathione Peroxidase/blood , Outcome Assessment, Health Care , Phobia, Social/blood , Phobia, Social/physiopathology , Phobia, Social/therapy , Telomerase/blood , Telomere/metabolism , Adult , Female , Humans , Male , Severity of Illness Index , Young Adult
9.
Transl Psychiatry ; 9(1): 317, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31772217

ABSTRACT

Early life exposure to infection, anti-infectives and altered immune activity have been associated with elevated risk of some psychiatric disorders. However, the risk from exposure in fetal life has been proposed to be confounded by familial factors. The hypothesis of this study is that antibiotic drug exposure during the fetal period and the first two postnatal years is associated with risk for later development of psychiatric disorders in children. All births in Finland between 1996 and 2012, 1 million births, were studied for antibiotic drug exposure: mothers during pregnancy and the children the first two postnatal years. The children were followed up for a wide spectrum of psychiatric diagnoses and psychotropic drug treatment until 2014. Cox proportional hazards modeling was used to estimate effects of antibiotic drug exposure on offspring psychiatric disorders. Modestly (10-50%) increased risks were found on later childhood development of sleep disorders, ADHD, conduct disorder, mood and anxiety disorders, and other behavioral and emotional disorders with childhood onset (ICD-10 F98), supported by increased risks also for childhood psychotropic medication. The prenatal exposure effects detected were not explained by explored familial confounding, nor by registered maternal infections. To conclude, this longitudinal nation-wide study shows that early life antibiotic drug exposure is associated with an increased risk for childhood development of psychopathology. Given the high occurrence of early-life antibiotic exposure, these findings are of public health relevance. Whether the associations reflect effects of the antibiotic drug use or of the targeted infections remains to be explored further.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Maternal Exposure/adverse effects , Neurodevelopmental Disorders/etiology , Prenatal Exposure Delayed Effects/etiology , Adult , Child, Preschool , Female , Finland/epidemiology , Humans , Infant , Infant, Newborn , Longitudinal Studies , Male , Neurodevelopmental Disorders/epidemiology , Pregnancy , Prenatal Exposure Delayed Effects/epidemiology , Proportional Hazards Models , Registries , Risk Factors
10.
Transl Psychiatry ; 8(1): 121, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29921868

ABSTRACT

The disruption of key epigenetic processes during critical periods of brain development can increase an individual's vulnerability to psychopathology later in life. For instance, DNA methylation in the glucocorticoid receptor gene (NR3C1) in adulthood is known to be associated with early-life adversities and has been suggested to mediate the development of stress-related disorders. However, the association between NR3C1 methylation and the emergence of internalizing symptoms in childhood and adolescence has not been studied extensively. In the present report, we used saliva DNA from a cohort of Swedish adolescents (13-14 years old; N = 1149) to measure NR3C1 methylation in the exon 1F region. Internalizing psychopathological symptoms were assessed using the Center for Epidemiologic Studies Depression Scale for Children (CES-DC). We found that NR3C1 hypermethylation was cross-sectionally associated with high score for internalizing symptoms in the whole group as well as among the female participants. In addition, an analysis of social environmental stressors revealed that reports of bullied or lacking friends were significantly associated with NR3C1 hypermethylation. This cross-sectional association of NR3C1 exon 1F hypermethylation with internalizing psychopathology in adolescents, as well as with bullying and lack of friends are novel results in this field. Longitudinal studies are needed to address whether NR3C1 methylation mediates the link between social stressors and psychopathology in adolescence.


Subject(s)
Bullying/psychology , DNA Methylation , Depressive Disorder/genetics , Receptors, Glucocorticoid/genetics , Stress, Psychological/genetics , Adolescent , Cohort Studies , CpG Islands , Cross-Sectional Studies , Epigenesis, Genetic , Female , Humans , Logistic Models , Male , Psychiatric Status Rating Scales , Saliva , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL
...