Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Clin Virol ; 153: 105217, 2022 08.
Article in English | MEDLINE | ID: mdl-35714462

ABSTRACT

BACKGROUND: Humoral and cellular immune responses to SARS-CoV-2 vaccination among immunosuppressed patients remain poorly defined, as well as variables associated with poor response. METHODS: We performed a retrospective observational cohort study at a large Northern California healthcare system of infection-naïve individuals fully vaccinated against SARS-CoV-2 (mRNA-1273, BNT162b2, or Ad26.COV2.S) with clinical SARS-CoV-2 interferon gamma release assay (IGRA) ordered between January through November 2021. Humoral and cellular immune responses were measured by anti-SARS-CoV-2 S1 IgG ELISA (anti-S1 IgG) and IGRA, respectively, following primary and/or booster vaccination. RESULTS: 496 immunosuppressed patients (54% female; median age 50 years) were included. 62% (261/419) of patients had positive anti-S1 IgG and 71% (277/389) had positive IGRA after primary vaccination, with 20% of patients having a positive IGRA only. Following booster, 69% (81/118) had positive anti-S1 IgG and 73% (91/124) had positive IGRA. Factors associated with low humoral response rates after primary vaccination included anti-CD20 monoclonal antibodies (P < 0.001), sphingosine 1-phsophate (S1P) receptor modulators (P < 0.001), mycophenolate (P = 0.002), and B cell lymphoma (P = 0.004); those associated with low cellular response rates included S1P receptor modulators (P < 0.001) and mycophenolate (P < 0.001). Of patients who had poor humoral response to primary vaccination, 35% (18/52) developed a significantly higher response after the booster. Only 5% (2/42) of patients developed a significantly higher cellular response to the booster dose compared to primary vaccination. CONCLUSIONS: Humoral and cellular response rates to primary and booster SARS-CoV-2 vaccination differ among immunosuppressed patient groups. Clinical testing of cellular immunity is important in monitoring vaccine response in vulnerable populations.


Subject(s)
COVID-19 , Viral Vaccines , Ad26COVS1 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Female , Humans , Immunity, Humoral , Immunoglobulin G , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Vaccination
2.
Dev Dyn ; 250(2): 134-144, 2021 02.
Article in English | MEDLINE | ID: mdl-32735383

ABSTRACT

BACKGROUND: Fibroblast Growth Factor 20 (FGF20)-FGF receptor 1 (FGFR1) signaling is essential for cochlear hair cell (HC) and supporting cell (SC) differentiation. In other organ systems, FGFR1 signals through several intracellular pathways including MAPK (ERK), PI3K, phospholipase C ɣ (PLCɣ), and p38. Previous studies implicated MAPK and PI3K pathways in HC and SC development. We hypothesized that one or both would be important downstream mediators of FGF20-FGFR1 signaling for HC differentiation. RESULTS: By inhibiting pathways downstream of FGFR1 in cochlea explant cultures, we established that both MAPK and PI3K pathways are required for HC differentiation while PLCɣ and p38 pathways are not. Examining the canonical PI3K pathway, we found that while AKT is necessary for HC differentiation, it is not sufficient to rescue the Fgf20-/- phenotype. To determine whether PI3K functions downstream of FGF20, we inhibited Phosphatase and Tensin Homolog (PTEN) in Fgf20-/- explants. Overactivation of PI3K resulted in a partial rescue of the Fgf20-/- phenotype, demonstrating a requirement for PI3K downstream of FGF20. Consistent with a requirement for the MAPK pathway for FGF20-regulated HC differentiation, we show that treating Fgf20-/- explants with FGF9 increased levels of dpERK. CONCLUSIONS: Together, these data provide evidence that both MAPK and PI3K are important downstream mediators of FGF20-FGFR1 signaling during HC and SC differentiation.


Subject(s)
Cell Differentiation , Fibroblast Growth Factors/metabolism , MAP Kinase Signaling System , Organ of Corti/growth & development , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Animals , Female , Fibroblast Growth Factor 9 , Male , Mice, Inbred C57BL , Mice, Knockout , Organ Culture Techniques , Organ of Corti/cytology , Organ of Corti/metabolism , PTEN Phosphohydrolase/antagonists & inhibitors , Phosphatidylinositol 3-Kinases/metabolism , Phospholipase C gamma/metabolism , Proto-Oncogene Proteins c-akt/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
3.
Dev Dyn ; 249(10): 1217-1242, 2020 10.
Article in English | MEDLINE | ID: mdl-32492250

ABSTRACT

BACKGROUND: Understanding the mechanisms that regulate hair cell (HC) differentiation in the organ of Corti (OC) is essential to designing genetic therapies for hearing loss due to HC loss or damage. We have previously identified Fibroblast Growth Factor 20 (FGF20) as having a key role in HC and supporting cell differentiation in the mouse OC. To investigate the genetic landscape regulated by FGF20 signaling in OC progenitors, we employ Translating Ribosome Affinity Purification combined with Next Generation RNA Sequencing (TRAPseq) in the Fgf20 lineage. RESULTS: We show that TRAPseq targeting OC progenitors effectively enriched for RNA from this rare cell population. TRAPseq identified differentially expressed genes (DEGs) downstream of FGF20, including Etv4, Etv5, Etv1, Dusp6, Hey1, Hey2, Heyl, Tectb, Fat3, Cpxm2, Sall1, Sall3, and cell cycle regulators such as Cdc20. Analysis of Cdc20 conditional-null mice identified decreased cochlea length, while analysis of Sall1-null and Sall1-ΔZn2-10 mice, which harbor a mutation that causes Townes-Brocks syndrome, identified a decrease in outer hair cell number. CONCLUSIONS: We present two datasets: genes with enriched expression in OC progenitors, and DEGs downstream of FGF20 in the embryonic day 14.5 cochlea. We validate select DEGs via in situ hybridization and in vivo functional studies in mice.


Subject(s)
Fibroblast Growth Factors/physiology , Organ of Corti/metabolism , Ribosomes/metabolism , Animals , Cell Differentiation , Fibroblast Growth Factors/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genetic Therapy , Hair Cells, Auditory, Outer/metabolism , Hearing , Mice , Mice, Transgenic , Mutation , Neurogenesis , Organ of Corti/embryology , Phenotype , Protein Biosynthesis , Sequence Analysis, RNA , Signal Transduction , Time Factors , Transcription Factors/genetics , Transcription Factors/metabolism
4.
PLoS Genet ; 15(7): e1008254, 2019 07.
Article in English | MEDLINE | ID: mdl-31276493

ABSTRACT

The mouse organ of Corti, housed inside the cochlea, contains hair cells and supporting cells that transduce sound into electrical signals. These cells develop in two main steps: progenitor specification followed by differentiation. Fibroblast Growth Factor (FGF) signaling is important in this developmental pathway, as deletion of FGF receptor 1 (Fgfr1) or its ligand, Fgf20, leads to the loss of hair cells and supporting cells from the organ of Corti. However, whether FGF20-FGFR1 signaling is required during specification or differentiation, and how it interacts with the transcription factor Sox2, also important for hair cell and supporting cell development, has been a topic of debate. Here, we show that while FGF20-FGFR1 signaling functions during progenitor differentiation, FGFR1 has an FGF20-independent, Sox2-dependent role in specification. We also show that a combination of reduction in Sox2 expression and Fgf20 deletion recapitulates the Fgfr1-deletion phenotype. Furthermore, we uncovered a strong genetic interaction between Sox2 and Fgf20, especially in regulating the development of hair cells and supporting cells towards the basal end and the outer compartment of the cochlea. To explain this genetic interaction and its effects on the basal end of the cochlea, we provide evidence that decreased Sox2 expression delays specification, which begins at the apex of the cochlea and progresses towards the base, while Fgf20-deletion results in premature onset of differentiation, which begins near the base of the cochlea and progresses towards the apex. Thereby, Sox2 and Fgf20 interact to ensure that specification occurs before differentiation towards the cochlear base. These findings reveal an intricate developmental program regulating organ of Corti development along the basal-apical axis of the cochlea.


Subject(s)
Fibroblast Growth Factors/genetics , Organ of Corti/cytology , Receptor, Fibroblast Growth Factor, Type 1/genetics , SOXB1 Transcription Factors/metabolism , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Female , Fibroblast Growth Factors/metabolism , Gene Knockout Techniques , Male , Mice , Organ of Corti/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction
5.
Dev Cell ; 48(1): 32-48.e5, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30595537

ABSTRACT

Cell fate transitions are essential for specification of stem cells and their niches, but the precise timing and sequence of molecular events during embryonic development are largely unknown. Here, we identify, with 3D and 4D microscopy, unclustered precursors of dermal condensates (DC), signaling niches for epithelial progenitors in hair placodes. With population-based and single-cell transcriptomics, we define a molecular time-lapse from pre-DC fate specification through DC niche formation and establish the developmental trajectory as the DC lineage emerges from fibroblasts. Co-expression of downregulated fibroblast and upregulated DC genes in niche precursors reveals a transitory molecular state following a proliferation shutdown. Waves of transcription factor and signaling molecule expression then coincide with DC formation. Finally, ablation of epidermal Wnt signaling and placode-derived FGF20 demonstrates their requirement for pre-DC specification. These findings uncover a progenitor-dependent niche precursor fate and the transitory molecular events controlling niche formation and function.


Subject(s)
Cell Differentiation/physiology , Dermis/metabolism , Gene Expression Regulation, Developmental/physiology , Hair Follicle/metabolism , Animals , Fibroblasts/cytology , Hair Follicle/embryology , Signal Transduction/genetics , Skin/metabolism , Stem Cells/cytology
6.
Dev Dyn ; 248(1): 88-97, 2019 01.
Article in English | MEDLINE | ID: mdl-30117627

ABSTRACT

The vertebrate skull is a complex structure housing the brain and specialized sensory organs, including the eye, the inner ear, and the olfactory system. The close association between bones of the skull and the sensory organs they encase has posed interesting developmental questions about how the tissues scale with one another. Mechanisms that regulate morphogenesis of the skull are hypothesized to originate in part from the encased neurosensory organs. Conversely, the developing skull is hypothesized to regulate the growth of neurosensory organs, through mechanical forces or molecular signaling. Here, we review studies of epithelial-mesenchymal interactions during inner ear and olfactory system development that may coordinate the growth of the two sensory organs with their surrounding bone. We highlight recent progress in the field and provide evidence that mechanical forces arising from bone growth may affect olfactory epithelium development. Developmental Dynamics 248:88-97, 2019. © 2018 Wiley Periodicals, Inc.


Subject(s)
Ear, Inner/growth & development , Olfactory Bulb/growth & development , Skull/anatomy & histology , Animals , Epithelium/growth & development , Epithelium/metabolism , Humans , Mechanical Phenomena , Mesoderm/metabolism , Signal Transduction , Vertebrates/anatomy & histology
7.
Dev Cell ; 46(5): 564-580.e5, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30100263

ABSTRACT

The olfactory epithelium (OE) is a neurosensory organ required for the sense of smell. Turbinates, bony projections from the nasal cavity wall, increase the surface area within the nasal cavity lined by the OE. Here, we use engineered fibroblast growth factor 20 (Fgf20) knockin alleles to identify a population of OE progenitor cells that expand horizontally during development to populate all lineages of the mature OE. We show that these Fgf20-positive epithelium-spanning progenitor (FEP) cells are responsive to Wnt/ß-Catenin signaling. Wnt signaling suppresses FEP cell differentiation into OE basal progenitors and their progeny and positively regulates Fgf20 expression. We further show that FGF20 signals to the underlying mesenchyme to regulate the growth of turbinates. These studies thus identify a population of OE progenitor cells that function to scale OE surface area with the underlying turbinates.


Subject(s)
Fibroblast Growth Factors/physiology , Mesoderm/cytology , Olfactory Mucosa/physiology , Stem Cells/physiology , Turbinates/growth & development , Wnt Signaling Pathway , Animals , Cell Differentiation , Cells, Cultured , Female , Male , Mesoderm/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Olfactory Mucosa/cytology , Olfactory Mucosa/embryology , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL