Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 10: 1101, 2019.
Article in English | MEDLINE | ID: mdl-31555142

ABSTRACT

Hypertrophic scars are pathological scars that result from abnormal responses to trauma, and could cause serious functional and cosmetic disability. To date, no optimal treatment method has been established. A variety of cell types are involved in hypertrophic scar formation after wound healing, but the underlying molecular mechanisms and cellular origins of hypertrophic scars are not fully understood. Macrophages are major effector cells in the immune response after tissue injury that orchestrates the process of wound healing. Depending on the local microenvironment, macrophages undergo marked phenotypic and functional changes at different stages during scar pathogenesis. This review intends to summarize the direct and indirect roles of macrophages during hypertrophic scar formation. The in vivo depletion of macrophages or blocking their signaling reduces scar formation in experimental models, thereby establishing macrophages as positive regulatory cells in the skin scar formation. In the future, a significant amount of attention should be given to molecular and cellular mechanisms that cause the phenotypic switch of wound macrophages, which may provide novel therapeutic targets for hypertrophic scars.

2.
J Cell Physiol ; 234(12): 21662-21669, 2019 12.
Article in English | MEDLINE | ID: mdl-31106425

ABSTRACT

Abnormal wound healing is likely to induce the formation of hypertrophic scars and keloids, which leads to dysfunction, deformity, and mental problem in the patients. Despite the advances in prevention and management of hypertrophic scar and keloids, the mechanism underlying scar and keloid formation has not been fully elucidated. Recent insights into the role of the epithelial-mesenchymal transition (EMT) in development, wound healing, stem cell regulation, fibrosis, and tumorigenesis have increased our understanding of the pathophysiology of hypertrophic scarring and keloids and suggested new therapeutic targets. This review summarizes recent progress in the elucidation of the role of EMT in physiologic wound healing and pathologic scar formation. This knowledge will facilitate an understanding of EMT roles in scar formation and shed new light on the modulation and potential treatment of hypertrophic scars and keloids.


Subject(s)
Cicatrix, Hypertrophic/pathology , Epithelial-Mesenchymal Transition/physiology , Keloid/pathology , Animals , Humans , Wound Healing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...