Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Toxins (Basel) ; 16(3)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38535821

ABSTRACT

More recently, short peptides in scorpion venom have received much attention because of their potential for drug discovery. Although various biological effects of these short peptides have been found, their studies have been hindered by the lack of structural information especially in modifications. In this study, small peptides from scorpion venom were investigated using high-performance liquid chromatography high-resolution mass spectrometry followed by de novo sequencing. A total of 156 sequences consisting of 2~12 amino acids were temporarily identified from Buthus martensii scorpion venom. The identified peptides exhibited various post-translational modifications including N-terminal and C-terminal modifications, in which the N-benzoyl modification was first found in scorpion venom. Moreover, a short peptide Bz-ARF-NH2 demonstrated both N-terminal and C-terminal modifications simultaneously, which is extremely rare in natural peptides. In conclusion, this study provides a comprehensive insight into the diversity, modifications, and potential bioactivities of short peptides in scorpion venom.


Subject(s)
Amino Acids , Animals, Poisonous , Scorpion Venoms , Scorpions , Liquid Chromatography-Mass Spectrometry , Peptides
2.
J Org Chem ; 88(20): 14470-14486, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37807762

ABSTRACT

An I2-catalyzed oxidative cross-coupling of α-amino ketones with a wide range of alcohols is described. Using a combination of air and dimethyl sulfoxide (DMSO) as oxidants, the protocol allows an efficient synthesis of α-carbonyl N,O-acetals with high functional group tolerance and enables the late-stage introduction of α-amino ketones into biorelevant alcohols. Moreover, the present method can be used in the coupling of α-amino ketones with other kinds of nucleophiles, which demonstrates great generality for the functionalization of α-amino ketones. A preliminary mechanistic investigation suggests that C-H hydroxylation of α-amino ketones has been recognized as the key step followed by subsequent dehydration coupling.

3.
J Pharm Biomed Anal ; 235: 115603, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37542829

ABSTRACT

Cordyceps sinensis is a precious medicinal food which has been successfully cultivated indoors. It remains to be investigated for a simultaneous comparison on aqueous components of natural and cultivated samples. Herein, an approach of quantitative nuclear magnetic resonance (qNMR) analysis combined with global spectral deconvolution (GSD) was established for simultaneous quantification of 26 aqueous components in C. sinensis. Processed by GSD, the distorted baselines of 1H NMR spectra were greatly improved, and overlapped signals were also well separated so as to achieve accurate identification and quantitation of components in C. sinensis. Method validation by UHPLC-QTOF-MS and TOF-SIMS analysis revealed that qNMR combined with GSD is a reliable approach for simultaneous quantification of multiple components including characteristic markers of glutamine, GABA and trehalose in authentic and fake C. sinensis. The well-established qNMR approach can be used for quality assessment of natural and cultivated C. sinensis as well as differentiation from fake ones.


Subject(s)
Cordyceps , Cordyceps/chemistry , Proton Magnetic Resonance Spectroscopy , Magnetic Resonance Spectroscopy , Magnetic Resonance Imaging , Water
4.
Int J Mol Sci ; 24(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37511135

ABSTRACT

A major active constituent of Moringa oleifera Lam. is 4-[(α-L-rhamnose oxy) benzyl] isothiocyanate (MITC). To broaden MITC's application and improve its biological activity, we synthesized a series of MITC quinazolinone derivatives and evaluated their anticancer activity. The anticancer effects and mechanisms of the compound with the most potent anticancer activity were investigated further. Among 16 MITC quinazolinone derivatives which were analyzed, MITC-12 significantly inhibited the growth of U251, A375, A431, HCT-116, HeLa, and MDA-MB-231 cells. MITC-12 significantly inhibited U251 cell proliferation in a time- and dose-dependent manner and decreased the number of EdU-positive cells, but was not toxic to normal human gastric mucosal cells (GES-1). Further, MITC-12 induced apoptosis of U251 cells, and increased caspase-3 expression levels and the Bax:Bcl-2 ratio. In addition, MITC-12 significantly decreased the proportion of U251 cells in the G1 phase and increased it in S and G2 phases. Transcriptome sequencing showed that MITC-12 had a significant regulatory effect on pathways regulating the cell cycle. Further, MITC-12 significantly decreased the expression levels of the cell cycle-related proteins CDK2, cyclinD1, and cyclinE, and increased those of cyclinA2, as well as the p-JNK:JNK ratio. These results indicate that MITC-12 inhibits U251 cell proliferation by inducing apoptosis and cell cycle arrest, activating JNK, and regulating cell cycle-associated proteins. MITC-12 has potential for use in the prevention and treatment of glioma.


Subject(s)
Glioma , Moringa oleifera , Humans , Cell Cycle Checkpoints , Glioma/metabolism , Cell Proliferation , Apoptosis , Cell Cycle , Cell Cycle Proteins/pharmacology , Isothiocyanates/pharmacology , Cell Line, Tumor
5.
Int J Mol Sci ; 23(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36555386

ABSTRACT

Parasitic helminths continue to pose problems in human and veterinary medicine, as well as in agriculture. Semen pharbitidis, the seeds of Pharbitis nil (Linn.) Choisy (Convolvulaceae), is a well-known traditional Chinese medicinal botanical preparation widely used for treating intestinal parasites in China owing to its desirable efficacy. However, the anthelmintic compounds in Semen pharbitidis and their mechanism of action have not been investigated yet. This study aimed to identify the compounds active against helminths from Semen pharbitidis, and to establish the mechanism of action of these active compounds. Bioassay-guided fractionation was used to identify the anthelmintic compounds from Semen pharbitidis. The anthelmintic assay was performed by monitoring Caenorhabditis elegans (C. elegans) motility with a WMicrotracker instrument. Active compounds were identified by high-resolution mass spectrometry. Several (analogues of) fragments of the anthelmintic compounds were purchased and tested to explore the structure-activity relationship, and to find more potent compounds. A panel of C. elegans mutant strains resistant to major currently used anthelmintic drugs was used to explore the mechanism of action of the active compounds. The bioassay-guided isolation from an ethanol extract of Semen pharbitidis led to a group of glycosides, namely pharbitin (IC50: 41.0 ± 9.4 µg/mL). Hit expansion for pharbitin fragments yielded two potent analogues: 2-bromohexadecanoic acid (IC50: 1.6 ± 0.7 µM) and myristoleic acid (IC50: 35.2 ± 7.6 µM). One drug-resistant mutant ZZ37 unc-63 (x37) demonstrated a ~17-fold increased resistance to pharbitin compared with wild-type worms. Collectively, we provide further experimental scientific evidence to support the traditional use of Semen pharbitidis for the treatment of intestinal parasites. The anthelmintic activity of Semen pharbitidis is due to pharbitin, whose target could be UNC-63 in C. elegans.


Subject(s)
Anthelmintics , Plant Extracts , Animals , Humans , Plant Extracts/chemistry , Caenorhabditis elegans , Seeds , Anthelmintics/pharmacology , Anthelmintics/chemistry , Glycosides/pharmacology , Biological Assay/methods
6.
Arch Pharm Res ; 45(9): 631-643, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36121609

ABSTRACT

(±)-Decumicorine A (1) and (±)-epi-decumicorine A (2), two pairs of enantiomeric isoquinoline alkaloids featuring a novel phenylpropanoid-conjugated protoberberine skeleton, were isolated and purified from the rhizomes of Corydalis decumbens. The separation of (±)-1 and (±)-2 was achieved by chiral HPLC to produce four optically pure enantiomers. The structures and absolute configurations of compounds (-)-1, (+)-1, (-)-2, and (+)-2 were elucidated by spectroscopic analysis, ECD calculations, and X-ray crystallographic analyses. The two racemates were generated from a Diels-Alder [4 + 2] cycloaddition between jatrorrhizine and ferulic acid in the proposed biosynthetic pathways, which were fully verified by a biomimetic synthesis. Moreover, compound (+)-1 exhibited an antiviral entry effect on SARS-CoV-2 pseudovirus by blocking spike binding to the ACE2 receptor on HEK-293T-ACE2h host cells.


Subject(s)
Alkaloids , COVID-19 Drug Treatment , Corydalis , Alkaloids/chemistry , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacology , Berberine Alkaloids , Biomimetics , Corydalis/chemistry , Humans , Isoquinolines , Molecular Structure , Rhizome , SARS-CoV-2
7.
Org Lett ; 24(14): 2625-2629, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35380842

ABSTRACT

We herein report a general and highly efficient method for the synthesis of dl-2,3-diamide-1,4-diones via autoxidative dehydrogenative homocoupling of N-acyl-2-aminoacetophenones mediated by t-BuOK. The transformation is mild, operationally simple, and environmentally friendly. Control experiments and stereochemical results suggest that the substrate undergoes autoxidation followed by a diastereoselective SN2 reactopm.


Subject(s)
Potassium
8.
Gut ; 71(4): 734-745, 2022 04.
Article in English | MEDLINE | ID: mdl-34006584

ABSTRACT

OBJECTIVE: Programmed death 1 and its ligand 1 (PD-1/PD-L1) immunotherapy is promising for late-stage lung cancer treatment, however, the response rate needs to be improved. Gut microbiota plays a crucial role in immunotherapy sensitisation and Panax ginseng has been shown to possess immunomodulatory potential. In this study, we aimed to investigate whether the combination treatment of ginseng polysaccharides (GPs) and αPD-1 monoclonal antibody (mAb) could sensitise the response by modulating gut microbiota. DESIGN: Syngeneic mouse models were administered GPs and αPD-1 mAb, the sensitising antitumour effects of the combination therapy on gut microbiota were assessed by faecal microbiota transplantation (FMT) and 16S PacBio single-molecule real-time (SMRT) sequencing. To assess the immune-related metabolites, metabolomics analysis of the plasma samples was performed. RESULTS: We found GPs increased the antitumour response to αPD-1 mAb by increasing the microbial metabolites valeric acid and decreasing L-kynurenine, as well as the ratio of Kyn/Trp, which contributed to the suppression of regulatory T cells and induction of Teff cells after combination treatment. Besides, the microbial analysis indicated that the abundance of Parabacteroides distasonis and Bacteroides vulgatus was higher in responders to anti-PD-1 blockade than non-responders in the clinic. Furthermore, the combination therapy sensitised the response to PD-1 inhibitor in the mice receiving microbes by FMT from six non-responders by reshaping the gut microbiota from non-responders towards that of responders. CONCLUSION: Our results demonstrate that GPs combined with αPD-1 mAb may be a new strategy to sensitise non-small cell lung cancer patients to anti-PD-1 immunotherapy. The gut microbiota can be used as a novel biomarker to predict the response to anti-PD-1 immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Gastrointestinal Microbiome , Lung Neoplasms , Panax , Animals , Antibodies, Monoclonal/pharmacology , Apoptosis , B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/therapy , Cell Death , Gastrointestinal Microbiome/physiology , Humans , Immunologic Factors/pharmacology , Immunotherapy/methods , Kynurenine/pharmacology , Ligands , Lung Neoplasms/therapy , Mice , Panax/metabolism , Polysaccharides/pharmacology , Tryptophan/pharmacology
10.
Org Biomol Chem ; 19(43): 9448-9459, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34693412

ABSTRACT

A C-H bond cleavage-enabled aerobic ring-opening reaction of 2-aminobenzofuran-3(2H)-ones formed in situ by hemiacetals with a variety of amines is reported. This simple one-pot reaction provides an alternative approach to obtain o-hydroxyaryl glyoxylamides in excellent yields of up to 97%. Alkylamines react with hemiacetals via a catalyst-free dehydration condensation to generate 2-aminobenzofuran-3(2H)-ones. The in situ formed semicyclic N,O-acetals undergo the same amine-initiated C-H bond hydroxylation in air under mild conditions to afford ring-opening products. Similarly, arylamines were investigated as substrates for a two-step tandem process involving a DPP-catalyzed condensation followed by a Et2NH-mediated C-H hydroxylation. Unlike the previously reported functionalization of N,O-acetals via a C-O or C-N cleavage, the aerobic oxidative C-H hydroxylation in this reaction, which is promoted by using stoichiometric amounts of alkylamines as both a Lewis base and a reductant at room temperature under atmospheric air, proceeds via α-carbonyl-stabilized carbanion intermediates from the C-H cleavage of N,O-acetals.

11.
ACS Omega ; 6(35): 22497-22503, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34514222

ABSTRACT

Ginkgolides are the most important components of Ginkgo biloba extracts, whose lactone can be hydrolyzed in the aqueous environment. Although the hydrolyzed products have complex structures and their functions are not well-understood, opening the lactone ring is an important strategy in producing novel derivatives of ginkgolide. The preparation of a single pure aminolyzed ginkgolide for the study of its bioactivity and understanding of the process of aminolysis are challenging. To obtain stable aminolyzed products, four amide derivatives (2-5) of ginkgolide B (GB, 1) were prepared via the ring-opening reaction of its lactone with propylamine. These products were purified and fully identified by high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR) spectroscopy and were further evaluated for their ability to inhibit the PAF-induced platelet aggregation of rabbit platelets in vitro. Compound 2, which was obtained by selective aminolysis of the lactone ring C of GB, showed a much better inhibitory activity of platelet aggregation (IC50, 15 nM) than the parent compound GB (IC50, 442 nM). The other three products (3-5), which were obtained by the aminolysis of lactone rings C and F of GB, did not show platelet aggregation inhibitory activity. The results greatly extended our understanding of the chemistry of GB and provided important structural information for the exploration and development of new drugs based on ginkgolides in G. biloba.

12.
Article in English | MEDLINE | ID: mdl-34211571

ABSTRACT

Lung cancer is one of the most common malignant tumors diagnosed worldwide. Moringa oleifera Lam. is a valuable medicinal plant native to India and Pakistan. However, the antilung cancer activity of M. oleifera alkaloid extract (MOAE) is unknown. The present study aimed to evaluate the regulatory effect of MOAE on A549 cells by examination of the proliferation, apoptosis, cell cycle, and migration of cells and to elucidate the possible mechanism of action of MOAE. We tested five types of cancer cells and four types of lung cancer cells and found MOAE exerted the strongest growth inhibitory effect against A549 cells but had low toxicity to GES-1 cells (human gastric mucosal epithelial cells). Simultaneously, MOAE induced apoptosis and increased the expression of the apoptosis-related proteins caspase-3 and caspase-9 in A549 cells. Furthermore, MOAE induced cell cycle arrest in the S phase through a decrease in the expression of the proteins cyclin D1 and cyclin E and an increase in the expression of the protein p21. MOAE also inhibited the migratory ability of A549 cells and decreased the expression of the migration-related proteins, matrix metalloproteinase (MMP) 2 and MMP9. In addition, the phosphorylation level of JAK2 and STAT3 proteins was decreased in MOAE-treated A549 cells. Furthermore, AZD1480 (a JAK inhibitor) and MOAE inhibited the proliferation and migration of A549 cells and induced cell apoptosis, and the effects of MOAE and AZD1480 were not additive. These results indicated that MOAE inhibits the proliferation and migration of A549 cells and induces apoptosis and cell cycle arrest through a mechanism that is related to the inhibition of JAK2/STAT3 pathway activation. Thus, this extract has potential for preventing and treating lung cancer.

13.
Bioorg Chem ; 109: 104740, 2021 04.
Article in English | MEDLINE | ID: mdl-33626453

ABSTRACT

Six new non-classical cardenolides (1-6), and seventeen known ones (7-23) were isolated from Calotropis gigantea. All cardenolides showed inhibitory effect on hypoxia inducible factor-1 (HIF-1) transcriptional activity with IC50 of 8.85 nM-16.69 µM except 5 and 7. The novel 19-dihydrocalotoxin (1) exhibited a comparable HIF-1 inhibitory activity (IC50 of 139.57 nM) to digoxin (IC50 of 145.77 nM), a well-studied HIF-1 inhibitor, and 11, 12, 14, 16 and 19 presented 1.4-15.4 folds stronger HIF-1 inhibition than digoxin. 1 and 11 showed a dose-dependent inhibition on HIF-1α protein, which led to their HIF-1 suppressing effects. Compared with LO2 and H9c2 normal cell lines, both 1 and 11 showed selective cytotoxicity against various cancer cell lines including HCT116, HeLa, HepG2, A549, MCF-7, A2780 and MDA-MB-231. Moreover, a comprehensive structure-activity relationship was concluded for these non-classical cardenolides as HIF-1 inhibitors, which may shed some light on the rational design and development of cardenolide-based anticancer drugs.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Calotropis/chemistry , Cardenolides/pharmacology , Hypoxia-Inducible Factor 1/antagonists & inhibitors , Plant Extracts/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cardenolides/chemistry , Cardenolides/isolation & purification , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Conformation , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Structure-Activity Relationship
14.
Front Cell Dev Biol ; 9: 790618, 2021.
Article in English | MEDLINE | ID: mdl-35059399

ABSTRACT

Moringa oleifera Lam. is a tropical and subtropical plant that has been used for centuries as both food and traditional medicine. 4-[(α-L-Rhamnosyloxy) benzyl] isothiocyanate (MIC-1) is an active substance in M. oleifera, with anti-cancer activity. However, whether MIC-1 exerts anti-renal cancer effects is unknown. Therefore, the aim of the present study was to evaluate the effects of MIC-1 on the growth and migration of renal cell carcinoma (RCC) cells and to identify the putative underlying mechanism. We found that, among 30 types of cancer cells, MIC-1 exerted the strongest growth inhibitory effects against 786-O RCC cells. In addition, MIC-1 (10 µM) significantly inhibited the growth of five RCC cell lines, including 786-O, OSRC-2, 769-P, SK-NEP-1, and ACHN cells, but was not toxic to normal renal (HK2) cells. Also, MIC-1 suppressed 786-O and 769-P cell migration and invasion abilities, and reduced the expression of matrix metalloproteinase (MMP)-2 and MMP-9. Furthermore, MIC-1 induced apoptosis and cell cycle arrest, increased Bax/Bcl-2 ratio, and decreased cell cycle-related protein expression in 786-O cells and 769-P cells. Molecular docking and small-molecule interaction analyses with PTP1B both showed that MIC-1 inhibited PTP1B activity by binding to its active site through hydrogen bonding and hydrophobic interactions. Additionally, MIC-1 could suppress the growth and migration of 786-O cells by inhibiting PTP1B-mediated activation of the Src/Ras/Raf/ERK signaling pathway. In vivo experiments further showed that MIC-1 markedly inhibited the growth of xenograft tumors in mice, and greatly increased Bax/Bcl-2 ratio in tumor tissues. In addition, MIC-1 had no effect on the PTP1B-dependent Src/Ras/Raf/ERK signaling pathway in HCT-116 cells, Hep-G2 cells, and A431 cells. Overall, our data showed that MIC-1 could be a promising, non-toxic, natural dietary supplement for the prevention and treatment of renal cancer.

15.
Front Pharmacol ; 11: 523962, 2020.
Article in English | MEDLINE | ID: mdl-33343339

ABSTRACT

Moringa oleifera Lam. (M. oleifera) is valuable plant distributed in many tropical and subtropical countries. It has a number of medicinal uses and is highly nutritious. M. oleifera has been shown to inhibit tumor cell growth, but this effect has not been demonstrated on prostate cancer cells. In this study, we evaluated the inhibitory effect of M. oleifera alkaloids (MOA) on proliferation and migration of PC3 human prostate cancer cells in vitro and in vivo. Furthermore, we elucidated the mechanism of these effects. The results showed that MOA inhibited proliferation of PC3 cells and induced apoptosis and cell cycle arrest. Furthermore, MOA suppressed PC3 cell migration and inhibited the expression of matrix metalloproteinases (MMP)-9. In addition, MOA significantly downregulated the expression of cyclooxygenase 2 (COX-2), ß-catenin, phosphorylated glycogen synthase 3ß, and vascular endothelial growth factor, and suppressed production of prostaglandin E2 (PGE2). Furthermore, FH535 (ß-catenin inhibitor) and MOA reversed PGE2-induced PC3 cell proliferation and migration, and the effects of MOA and FH535 were not additive. In vivo experiments showed that MOA (150 mg/kg) significantly inhibited growth of xenograft tumors in mice, and significantly reduced the protein expression levels of COX-2 and ß-catenin in tumor tissues. These results indicate that MOA inhibits the proliferation and migration, and induces apoptosis and cell cycle arrest of PC3 cells. Additionally, MOA inhibits the proliferation and migration of PC3 cells through suppression of the COX-2 mediated Wnt/ß-catenin signaling pathway.

16.
Phytomedicine ; 77: 153272, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32702592

ABSTRACT

BACKGROUND: Alstonia scholaris is a folk medicine used to treat cough, asthma and chronic obstructive pulmonary disease in China. Total alkaloids (TA) from A. scholaris exhibit anti-inflammatory properties in acute respiratory disease, which suggests their possible anti-inflammatory effect on influenza virus infection. PURPOSE: To assess the clinical use of TA by demonstrating their anti-influenza and anti-inflammatory effects and the possible mechanism underlying the effect of TA on influenza A virus (IAV) infection in vitro and to reveal the inhibitory effect of TA on lung immunopathology caused by IAV infection. METHODS: Antiviral and anti-inflammatory activities were assessed in Madin-Darby canine kidney (MDCK) and A549 cells and U937-derived macrophages infected with influenza A/PR/8/34 (H1N1) virus. Proinflammatory cytokine levels were measured by real-time quantitative PCR and Bio-Plex assays. The activation of innate immune signaling induced by H1N1 virus in the absence or presence of TA was detected in A549 cells by Western blot. Furthermore, mice were infected intranasally with H1N1 virus and treated with TA (50, 25 and 12.5 mg/kg/d) or oseltamivir (60 mg/kg/d) for 5 days in vivo. The survival rates and body weight were recorded, and the viral titer, proinflammatory cytokine levels, innate immune cell populations and histopathological changes in the lungs were analyzed. RESULTS: TA significantly inhibited viral replication in A549 cells and U937-derived macrophages and markedly reduced cytokine and chemokine production at the mRNA and protein levels. Furthermore, TA blocked the activation of pattern recognition receptor (PRR)- and IFN-activated signal transduction in A549 cells. Critically, TA also increased the survival rate, reduced the viral titer, suppressed proinflammatory cytokine production and innate immune cell infiltration and improved lung histopathology in a lethal PR8 mouse model. CONCLUSION: TA exhibits anti-viral and anti-inflammatory effects against IAV infection by interfering with PRR- and IFN-activated signal transduction.


Subject(s)
Alkaloids/pharmacology , Alstonia/chemistry , Antiviral Agents/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Lung/drug effects , A549 Cells , Alkaloids/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antiviral Agents/chemistry , Cytokines/metabolism , Dogs , Female , Humans , Immunity, Innate/drug effects , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/drug therapy , Lung/immunology , Lung/pathology , Lung/virology , Madin Darby Canine Kidney Cells , Mice, Inbred C57BL , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/pathology , Virus Replication/drug effects
17.
Front Microbiol ; 10: 705, 2019.
Article in English | MEDLINE | ID: mdl-31031719

ABSTRACT

Different parts of Cnestis ferruginea are used in traditional African medicine for treating infectious diseases such as dysentery, bronchitis, eye troubles, conjunctivitis, sinusitis, gonorrhea, and syphilis. Despite its long traditional use in the treatment of infections, this plant is not well studied for its in vitro antimicrobial properties. Therefore, the present study aims to establish the antimicrobial activity profile of extracts from this plant, as well as to isolate and evaluate the antimicrobial activity of the most abundant bioactive compound in C. ferruginea leaves through bioassay-guided purification, using Staphylococcus aureus as a target organism. Although both methanol and water extracts of the plant leaves proved active against S. aureus, a water extract was pursued, and subjected further to liquid-liquid partitioning (ethyl acetate, butanol, and water). The ethyl acetate fraction was found to be the most potent and was subjected to silica gel chromatography. In total, 250 fractions were obtained, and those with similar TLC profiles were clustered into 22 major groups, of which pooled fraction-F6 (83 mg) was the most potent. Additional purification by HPLC resulted in two active peaks, which were identified, using a combination of NMR and mass spectrometry, as hydroquinone and caffeic acid methyl ester. Their antimicrobial activity was confirmed using a microdilution protocol on S. aureus, where hydroquinone had a stronger activity (MIC50 = 63 µg/mL) compared to caffeic acid methyl ester (>200 µg/mL). Traditionally this plant is used as an aqueous preparation to treat many infections, and the present study also demonstrated antimicrobial activity in the aqueous extract, which appears due mainly to two major water-soluble compounds isolated through bioassay-guided purification. This supports the clinical use of the aqueous extract of C. ferruginea leaves as a phytotherapeutic for bacterial infections.

18.
J Ethnopharmacol ; 232: 130-134, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30572093

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Semen Pharbitidis, the seeds of Pharbitis nil (Linn.) Choisy (Convolvulaceae) is a well-known traditional Chinese medicinal plant used for treating helminthiasis and epilepsy in China. AIM OF THE STUDY: This study aims to identify the anti-seizure components from Semen Pharbitidis. METHODS: A bioassay-guided isolation of anti-seizure compounds from Semen Pharbitidis was performed using a zebrafish pentylenetetrazol seizure model. The structures of active compounds were elucidated by high resolution mass spectrometry. The fragments of active compounds were tested for anti-seizure activity as well. RESULTS: The bioassay-guided isolation of ethanol extract of Semen Pharbitidis led to a group of resin glucosides, namely pharbitin. One of the fragments of pharbitin, 2-methylbutyric acid, also showed anti-seizure activity. CONCLUSIONS: We provided further experimental scientific evidence to support the traditional use of Semen Pharbitidis for the treatment of epilepsy. Pharbitin was identified to be the main anti-seizure component in Semen Pharbitidis.


Subject(s)
Anticonvulsants/therapeutic use , Glycosides/therapeutic use , Ipomoea nil , Plant Extracts/therapeutic use , Resins, Plant/therapeutic use , Seizures/drug therapy , Animals , Butyrates/therapeutic use , Pentylenetetrazole , Seeds , Seizures/chemically induced , Zebrafish
19.
Front Pharmacol ; 9: 1418, 2018.
Article in English | MEDLINE | ID: mdl-30618736

ABSTRACT

Salvia officinalis is frequently used in traditional Algerian medicine to treat diverse microbial infections, including oral and vaginal candidiasis. The aerial parts of S. officinalis collected in Annaba, Algeria were extracted in parallel by maceration with four solvents viz. hexane, acetone, methanol and water. All the extracts were tested in vitro against several Candida species: C. albicans, C. glabrata, and C. parapsilosis. Furthermore, the activity against biofilm-forming C. albicans was investigated using bioassay-guided fractionation. A large-scale extract was prepared via maceration in methanol, followed by fractionation on a silica gel column using increasingly polar mixtures of n-hexane, ethyl acetate, methanol, and acetic acid as mobile phase, to yield a total of 150 fractions. Two major active fractions (F-31 and F-39), were further separated by HPLC, resulting in several active chromatographic peaks. Carnosol and 12-methoxy-trans-carnosic acid were isolated as two major active compounds, and identified by a combination of NMR and mass spectrometry. The biofilm inhibitory concentration showed that 12-methoxy-trans-carnosic acid is more effective than carnosol with BIC50 values of 94 µM (95% confidence interval, 78.9-112.1 µM) and 314 µM (95% confidence interval, 200.7-491.2 µM), respectively. The present study supports the traditional use of sage in the treatment of various fungal infections caused by Candida. Further studies of the bioactive compounds in an in vivo Candida biofilm model are required to validate their clinical potential as antifungals.

20.
Int J Mol Sci ; 18(1)2017 Jan 13.
Article in English | MEDLINE | ID: mdl-28098763

ABSTRACT

Eleven new abietane type (1‒11), and one new kaurane (12), diterpenes, together with eleven known compounds (13-23), were isolated and identified from the stems of Tripterygium regelii, which has been used as a traditional folk Chinese medicine for the treatment of rheumatoid arthritis in China. The structures of new compounds were characterized by means of the interpretation of high-resolution electrospray ionization mass spectrometry (HRESIMS), extensive nuclear magnetic resonance (NMR) spectroscopic data and comparisons of their experimental CD spectra with calculated electronic circular dichroism (ECD) spectra. Compound 1 is the first abietane type diterpene with an 18→1 lactone ring. Compound 19 was isolated from the plants of the Tripterygium genus for the first time, and compounds 14-17 were isolated from T. regelii for the first time. Triregelin I (9) showed significant cytotoxicity against A2780 and HepG2 with IC50 values of 5.88 and 11.74 µM, respectively. It was found that this compound was inactive against MCF-7 cells. The discovery of these twelve new diterpenes not only provided information on chemical substances of T. regelii, but also contributed to the chemical diversity of natural terpenoids.


Subject(s)
Abietanes/isolation & purification , Diterpenes, Kaurane/isolation & purification , Plant Stems/chemistry , Tripterygium/chemistry , Abietanes/chemistry , Abietanes/pharmacology , Carbon-13 Magnetic Resonance Spectroscopy , Cell Death/drug effects , Cell Line, Tumor , Circular Dichroism , Diterpenes, Kaurane/chemistry , Diterpenes, Kaurane/pharmacology , Humans , Proton Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...