Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Transp Res Rec ; 2677(4): 168-180, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37153196

ABSTRACT

The research team has utilized privacy-protected mobile device location data, integrated with COVID-19 case data and census population data, to produce a COVID-19 impact analysis platform that can inform users about the effects of COVID-19 spread and government orders on mobility and social distancing. The platform is being updated daily, to continuously inform decision-makers about the impacts of COVID-19 on their communities, using an interactive analytical tool. The research team has processed anonymized mobile device location data to identify trips and produced a set of variables, including social distancing index, percentage of people staying at home, visits to work and non-work locations, out-of-town trips, and trip distance. The results are aggregated to county and state levels to protect privacy, and scaled to the entire population of each county and state. The research team is making their data and findings, which are updated daily and go back to January 1, 2020, for benchmarking, available to the public to help public officials make informed decisions. This paper presents a summary of the platform and describes the methodology used to process data and produce the platform metrics.

2.
Environ Res ; 212(Pt C): 113428, 2022 09.
Article in English | MEDLINE | ID: mdl-35568232

ABSTRACT

Respiratory infectious diseases (e.g., COVID-19) have brought huge damages to human society, and the accurate prediction of their transmission trends is essential for both the health system and policymakers. Most related studies focus on epidemic trend forecasting at the macroscopic level, which ignores the microscopic social interactions among individuals. Meanwhile, current microscopic models are still not able to sufficiently decipher the individual-based spreading process and lack valid quantitative tests. To tackle these problems, we propose an exposure-risk-based model at the microscopic level, including 4 modules: individual movement, virion-laden droplet movement, individual exposure risk estimation, and prediction of transmission trends. Firstly, the front two modules reproduce the movements of individuals and the droplets of infectors' expiratory activities, respectively. Then, the outputs are fed to the third module to estimate the personal exposure risk. Finally, the number of new cases is predicted in the final module. By predicting the new COVID- 19 cases in the United States, the performances of our model and 4 other existing macroscopic or microscopic models are compared. Specifically, the mean absolute error, root mean square error, and mean absolute percentage error provided by the proposed model are respectively 2454.70, 3170.51, and 3.38% smaller than the minimum results of comparison models. The quantitative results reveal that our model can accurately predict the transmission trends from a microscopic perspective, and it can benefit the further investigation of many microscopic disease transmission factors (e.g., non-walkable areas and facility layouts).


Subject(s)
Communicable Diseases , Epidemics , Forecasting , Respiratory Tract Infections , COVID-19/epidemiology , Communicable Diseases/epidemiology , Humans , Models, Theoretical , Respiratory Tract Infections/epidemiology , Risk Assessment
3.
Transportation (Amst) ; 49(5): 1339-1383, 2022.
Article in English | MEDLINE | ID: mdl-34400848

ABSTRACT

Mobile device location data (MDLD) contains abundant travel behavior information to support travel demand analysis. Compared to traditional travel surveys, MDLD has larger spatiotemporal coverage of the population and its mobility. However, ground truth information such as trip origins and destinations, travel modes, and trip purposes are not included by default. Such important attributes must be imputed to maximize the usefulness of the data. This paper targets at studying the capability of MDLD on estimating travel mode share at aggregated levels. A data-driven framework is proposed to extract travel behavior information from MDLD. The proposed framework first identifies trip ends with a modified Spatiotemporal Density-based Spatial Clustering of Applications with Noise algorithm. Then three types of features are extracted for each trip to impute travel modes using machine learning models. A labeled MDLD dataset with ground truth information is used to train the proposed models, resulting in a 95% recall rate in identifying trip ends and over 93% tenfold cross-validation accuracy in imputing the five travel modes (drive, rail, bus, bike and walk) with a random forest (RF) classifier. The proposed framework is then applied to two large-scale MDLD datasets, covering the Baltimore-Washington metropolitan area and the United States, respectively. The estimated trip distance, trip time, trip rate distribution, and travel mode share are compared against travel surveys at different geographies. The results suggest that the proposed framework can be readily applied in different states and metropolitan regions with low cost in order to study multimodal travel demand, understand mobility trends, and support decision making.

4.
Sustain Cities Soc ; 76: 103506, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34877249

ABSTRACT

Social distancing has become a key countermeasure to contain the dissemination of COVID-19. This study examined county-level racial/ethnic disparities in human mobility and COVID-19 health outcomes during the year 2020 by leveraging geo-tracking data across the contiguous US. Sets of generalized additive models were fitted under cross-sectional and time-varying settings, with percentage of mobility change, percentage of staying home, COVID-19 infection rate, and case-fatality ratio as dependent variables, respectively. After adjusting for spatial effects, built environment, socioeconomics, demographics, and partisanship, we found counties with higher Asian populations decreased most in travel, counties with higher White and Asian populations experienced the least infection rate, and counties with higher African American populations presented the highest case-fatality ratio. Control variables, particularly partisanship and education attainment, significantly influenced modeling results. Time-varying analyses further suggested racial differences in human mobility varied dramatically at the beginning but remained stable during the pandemic, while racial differences in COVID-19 outcomes broadly decreased over time. All conclusions hold robust with different aggregation units or model specifications. Altogether, our analyses shine a spotlight on the entrenched racial segregation in the US as well as how it may influence the mobility patterns, urban forms, and health disparities during the COVID-19.

5.
PLoS One ; 16(10): e0258379, 2021.
Article in English | MEDLINE | ID: mdl-34634078

ABSTRACT

During the outbreak of the COVID-19 pandemic, Non-Pharmaceutical and Pharmaceutical treatments were alternative strategies for governments to intervene. Though many of these intervention methods proved to be effective to stop the spread of COVID-19, i.e., lockdown and curfew, they also posed risk to the economy; in such a scenario, an analysis on how to strike a balance becomes urgent. Our research leverages the mobility big data from the University of Maryland COVID-19 Impact Analysis Platform and employs the Generalized Additive Model (GAM), to understand how the social demographic variables, NPTs (Non-Pharmaceutical Treatments) and PTs (Pharmaceutical Treatments) affect the New Death Rate (NDR) at county-level. We also portray the mutual and interactive effects of NPTs and PTs on NDR. Our results show that there exists a specific usage rate of PTs where its marginal effect starts to suppress the NDR growth, and this specific rate can be reduced through implementing the NPTs.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/methods , Models, Statistical , Pandemics/prevention & control , SARS-CoV-2 , Age Factors , Aged , Aged, 80 and over , Antiviral Agents/therapeutic use , COVID-19/virology , Female , Humans , Linear Models , Male , Middle Aged , Pandemics/economics , Treatment Outcome , United States/epidemiology , COVID-19 Drug Treatment
6.
Transp Policy (Oxf) ; 109: 12-23, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34025048

ABSTRACT

Mathematical modeling of epidemic spreading has been widely adopted to estimate the threats of epidemic diseases (i.e., the COVID-19 pandemic) as well as to evaluate epidemic control interventions. The indoor place is considered to be a significant epidemic spreading risk origin, but existing widely-used epidemic spreading models are usually limited for indoor places since the dynamic physical distance changes between people are ignored, and the empirical features of the essential and non-essential travel are not differentiated. In this paper, we introduce a pedestrian-based epidemic spreading model that is capable of modeling indoor transmission risks of diseases during people's social activities. Taking advantage of the before-and-after mobility data from the University of Maryland COVID-19 Impact Analysis Platform, it's found that people tend to spend more time in grocery stores once their travel frequencies are restricted to a low level. In other words, an increase in dwell time could balance the decrease in travel frequencies and satisfy people's demands. Based on the pedestrian-based model and the empirical evidence, combined non-pharmaceutical interventions from different operational levels are evaluated. Numerical simulations show that restrictions on people's travel frequency and open hours of indoor places may not be universally effective in reducing average infection risks for each pedestrian who visit the place. Entry limitations can be a widely effective alternative, whereas the decision-maker needs to balance the decrease in risky contacts and the increase in queue length outside the place that may impede people from fulfilling their travel needs. The results show that a good coordination among the decision-makers can contribute to the improvement of the performance of combined non-pharmaceutical interventions, and it also benefits the short-term and long-term interventions in the future.

7.
Transp Res Part C Emerg Technol ; 124: 102955, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33456212

ABSTRACT

During the unprecedented coronavirus disease 2019 (COVID-19) challenge, non-pharmaceutical interventions became a widely adopted strategy to limit physical movements and interactions to mitigate virus transmissions. For situational awareness and decision-support, quickly available yet accurate big-data analytics about human mobility and social distancing is invaluable to agencies and decision-makers. This paper presents a big-data-driven analytical framework that ingests terabytes of data on a daily basis and quantitatively assesses the human mobility trend during COVID-19. Using mobile device location data of over 150 million monthly active samples in the United States (U.S.), the study successfully measures human mobility with three main metrics at the county level: daily average number of trips per person; daily average person-miles traveled; and daily percentage of residents staying home. A set of generalized additive mixed models is employed to disentangle the policy effect on human mobility from other confounding effects including virus effect, socio-demographic effect, weather effect, industry effect, and spatiotemporal autocorrelation. Results reveal the policy plays a limited, time-decreasing, and region-specific effect on human movement. The stay-at-home orders only contribute to a 3.5%-7.9% decrease in human mobility, while the reopening guidelines lead to a 1.6%-5.2% mobility increase. Results also indicate a reasonable spatial heterogeneity among the U.S. counties, wherein the number of confirmed COVID-19 cases, income levels, industry structure, age and racial distribution play important roles. The data informatics generated by the framework are made available to the public for a timely understanding of mobility trends and policy effects, as well as for time-sensitive decision support to further contain the spread of the virus.

8.
J R Soc Interface ; 17(173): 20200344, 2020 12.
Article in English | MEDLINE | ID: mdl-33323055

ABSTRACT

One approach to delaying the spread of the novel coronavirus (COVID-19) is to reduce human travel by imposing travel restriction policies. Understanding the actual human mobility response to such policies remains a challenge owing to the lack of an observed and large-scale dataset describing human mobility during the pandemic. This study uses an integrated dataset, consisting of anonymized and privacy-protected location data from over 150 million monthly active samples in the USA, COVID-19 case data and census population information, to uncover mobility changes during COVID-19 and under the stay-at-home state orders in the USA. The study successfully quantifies human mobility responses with three important metrics: daily average number of trips per person; daily average person-miles travelled; and daily percentage of residents staying at home. The data analytics reveal a spontaneous mobility reduction that occurred regardless of government actions and a 'floor' phenomenon, where human mobility reached a lower bound and stopped decreasing soon after each state announced the stay-at-home order. A set of longitudinal models is then developed and confirms that the states' stay-at-home policies have only led to about a 5% reduction in average daily human mobility. Lessons learned from the data analytics and longitudinal models offer valuable insights for government actions in preparation for another COVID-19 surge or another virus outbreak in the future.


Subject(s)
COVID-19/prevention & control , Computers, Handheld , Pandemics , SARS-CoV-2 , Travel , COVID-19/epidemiology , Data Interpretation, Statistical , Geographic Information Systems , Humans , Longitudinal Studies , Models, Statistical , Pandemics/prevention & control , Physical Distancing , Travel/legislation & jurisprudence , Travel/statistics & numerical data , Travel/trends , United States/epidemiology
9.
Proc Natl Acad Sci U S A ; 117(44): 27087-27089, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33060300

ABSTRACT

Accurately estimating human mobility and gauging its relationship with virus transmission is critical for the control of COVID-19 spreading. Using mobile device location data of over 100 million monthly active samples, we compute origin-destination travel demand and aggregate mobility inflow at each US county from March 1 to June 9, 2020. Then, we quantify the change of mobility inflow across the nation and statistically model the time-varying relationship between inflow and the infections. We find that external travel to other counties decreased by 35% soon after the nation entered the emergency situation, but recovered rapidly during the partial reopening phase. Moreover, our simultaneous equations analysis highlights the dynamics in a positive relationship between mobility inflow and the number of infections during the COVID-19 onset. This relationship is found to be increasingly stronger in partially reopened regions. Our study provides a quick reference and timely data availability for researchers and decision makers to understand the national mobility trends before and during the pandemic. The modeling results can be used to predict mobility and transmissions risks and integrated with epidemics models to further assess the public health outcomes.


Subject(s)
Cell Phone , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Travel , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Humans , Models, Theoretical , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...