Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(38): e2301803, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37222123

ABSTRACT

The development of eco-friendly solvent-processed organic solar cells (OSCs) suitable for industrial-scale production should be now considered the imperative research. Herein, asymmetric 3-fluoropyridine (FPy) unit is used to control the aggregation and fibril network of polymer blends. Notably, terpolymer PM6(FPy = 0.2) incorporating 20% FPy in a well-known donor polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)] (PM6) can reduce the regioregularity of the polymer backbone and endow them with much-enhanced solubility in eco-friendly solvents. Accordingly, the excellent adaptability for fabricating versatile devices based on PM6(FPy = 0.2) by toluene processing is demonstrated. The resulting OSCs exhibit a high power conversion efficiency (PCE) of 16.1% (17.0% by processed with chloroform) and low batch-to-batch variation. Moreover, by controlling the donor-to-acceptor weight ratio at 0.5:1.0 and 0.25:1.0, semi-transparent OSCs (ST-OSCs) yield significant light utilization efficiencies of 3.61% and 3.67%, respectively. For large-area (1.0 cm2 ) indoor OSC (I-OSC), a high PCE of 20.6% is achieved with an appropriate energy loss of 0.61 eV under a warm white light-emitting diode (3,000 K) with the illumination of 958 lux. Finally, the long-term stability of the devices is evaluated by investigating their structure-performance-stability relationship. This work provides an effective approach to realizing eco-friendly, efficient, and stable OSCs/ST-OSCs/I-OSCs.

2.
ACS Appl Mater Interfaces ; 14(33): 38031-38047, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35960878

ABSTRACT

The development of photoactive materials simultaneously satisfying high performance, low cost, and eco-friendly processability remains challenging in organic solar cells (OSCs). Herein, a synergistic strategy is proposed to design three terpolymers (PM7(ClCl = 0.2), PM7(ClBr = 0.2), and PM7(BrBr = 0.2)) based on bihalogenated thiophenes with relatively low cost, for improving the optical and electrochemical properties, solubility in nontoxic solvents, and crystallinity and miscibility balance. In summary, a bulk-heterojunction (BHJ)-processed device based on PM7(ClCl = 0.2) with 20% dichlorinated thiophene achieves the highest power conversion efficiency (PCE) of 15.2% using toluene (best PCE ≈ 15.8% on the ternary blend). Moreover, high-performance semitransparent OSCs (ST-OSCs) were fabricated by a combination of layer-by-layer (LBL) and sequential dynamic and static spin-coating techniques according to the molecular weight of PM7(ClCl = 0.2). Using this unique LBL strategy, the PM7(ClCl = 0.2)-MW (H; high molecular weight)-processed ST-OSCs yield a high PCE of 11.5% and an average visible transmittance (AVT) of 27.1% with outstanding tolerance to device reproducibility. By optimizing ST-OSCs with tungsten trioxide as a distributed Bragg reflector, a light utilization efficiency (LUE) of 3.61% is realized with a PCE of 10.8% and an AVT of 33.4% (certified PCE ≈ 11.157%; LUE ≈ 3.73%). This study provides a novel perspective for designing and developing actual photoactive materials for OSC commercialization.

SELECTION OF CITATIONS
SEARCH DETAIL
...