Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; : e202400413, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822713

ABSTRACT

Reaction of a P/N/S hybrid ligand dpppyatc (N,N-bis((diphenylphosphaneyl)methyl)-N-(pyridin-2-yl)-amino-thiocarbamide) with Au(tht)Cl (tht = tetrahydrothiophene) and [Cu(MeCN)4]BF4 afforded cluster complex [Au2Cu(dpppyatc)2](BF4)2Cl (1). Upon excitation at 480 nm, 1 emitted orange phosphorescence at 646 nm, which was red-shifted to ~698 nm selectively in the presence of ammonia or amine vapor. This chromic photoluminescent response toward ammonia was sensitive and reversible. Complex1 could detect ammonia in aqueous solution down to concentrations of 2 ppm (w/w).

2.
Molecules ; 28(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37513384

ABSTRACT

The reaction of CF3COOAg, 3-bdppmapy (N,N-bis(diphenylphosphanylmethyl)-3-aminopyridine) and HTZ (1,2,4-triazole-3-thiol) in CH2Cl2/MeOH resulted in a dinuclear Ag/P/S complex [Ag2(TZ)2(3-bdppmapy)2]·xSol (1·xSol). Crystals of 1·xSol converted to 1·2MeOH in air at room temperature and further to 1 under vacuum upon heating. The solid-state, room-temperature photoluminescent emission of 1·xSol (510 nm) shifted to 494 nm (1·2MeOH) and 486 nm (1). Grinding solids of 1·2MeOH in air resulted in amorphous 1G characterized by solid-state emission at 468 nm, which converted to 1GR with 513 nm emission upon MeOH treatment. Grinding 1GR in air returned 1G, and this interconversion was reproducible over five cycles. The solid-state photoluminescence of 1G changed in response to vapors containing low-molecular weight alcohols but remained unchanged after exposure to other volatile organic compounds (VOCs) or to water vapor. Test papers impregnated with 1G could detect methanol in vapors from aqueous solutions at concentrations above 50%. Complex 1G is, therefore, an example of a stimuli-responsive molecular sensor for the detection of alcohols.

3.
Inorg Chem ; 62(16): 6439-6446, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37053452

ABSTRACT

A heterobimetallic coordination polymer [Au4(dppmt)4(AgCl)2]n (1) incorporating an in situ generated P-S ligand (dppmtH) was synthesized from the solvothermal reaction of Au(tht)Cl, AgCl, and dpppyatc in CH3CN/CH2Cl2 (dppmtH = (diphenylphosphino)methanethiol, tht = tetrahydrothiophene, dpppyatc = N,N-bis((diphenylphosphaneyl)methyl)-N-(pyridin-2-yl)-amino-thiocarbamide). The structure of 1 contains a one-dimensional helical Au-Au chain in which the unique [Au4Ag2S2] cluster units are connected by [Au2(dppmt)2] dimers. Upon excitation at 343 nm, 1 exhibited cyan (495 nm) phosphorescent emission at quantum yield (QY) = 22.3% and τ = 0.78 µs (λex = 375 nm). Coordination polymer 1 exhibited a rapid, selective, reversible, and visible vapor-chromic response on exposure to methanol (MeOH) vapor with its emission shifting to a more intense green (530 nm, λex = 388 nm) with QY = 46.8% and τ = 1.24 µs (λex = 375 nm). A polymethylmethacrylate film containing 1 served as a reversible chemical sensor for the sensitive detection of MeOH in air.

4.
ACS Omega ; 4(27): 22557-22561, 2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31909339

ABSTRACT

Phosgene, a widely used but highly toxic substance, may pose a serious risk to public safety and health because of the potential abuse and possible accidental leakage. Consequently, it is of great significance to develop a rapid, reliable, and sensitive detection method for this noxious agent. In this work, an aggregation-induced emission-based sensor, 3,6-bis(1,2,2-triphenylvinyl)benzene-1,2-diamine (DATPE), has been rationally designed for detecting phosgene by conjugation of o-phenylenediamine (OPD) core as the reactive recognition moiety decorated with two peripheral triphenylethylene (TPE) units. A light-up fluorescence response is achieved by the fast cyclization reaction of OPD part and phosgene along with the formation of 2-imidazolidinone ring, thus inhibiting the intramolecular charge transfer quenching process in the sensor. Moreover, an easy-to-use test paper with DATPE is fabricated for onsite visual detection of phosgene in the gas phase even at a concentration of as low as 0.1 ppm.

SELECTION OF CITATIONS
SEARCH DETAIL
...