Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Basic Res Cardiol ; 116(1): 54, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34581906

ABSTRACT

Whereas elimination of damaged mitochondria by mitophagy is proposed to be cardioprotective, the regulation of mitophagy at reperfusion and the underlying mechanism remain elusive. Since mitochondrial Zn2+ may control mitophagy by regulating mitochondrial membrane potential (MMP), we hypothesized that the zinc transporter ZIP7 that controls Zn2+ levels within mitochondria would contribute to reperfusion injury by regulating mitophagy. Mouse hearts were subjected to ischemia/reperfusion in vivo. Mitophagy was evaluated by detecting mitoLC3II, mito-Keima, and mitoQC. ROS were measured with DHE and mitoB. Infarct size was measured with TTC staining. The cardiac-specific ZIP7 conditional knockout mice (ZIP7 cKO) were generated by adopting the CRISPR/Cas9 system. Human heart samples were obtained from donors and recipients of heart transplant surgeries. KO or cKO of ZIP7 increased mitophagy under physiological conditions. Mitophagy was not activated at the early stage of reperfusion in mouse hearts. ZIP7 is upregulated at reperfusion and ZIP7 cKO enhanced mitophagy upon reperfusion. cKO of ZIP7 led to mitochondrial depolarization by increasing mitochondrial Zn2+ and, accumulation of PINK1 and Parkin in mitochondria, suggesting that the decrease in mitochondrial Zn2+ in response to ZIP7 upregulation resulting in mitochondrial hyperpolarization may impede PINK1 and Parkin accumulation in mitochondria. Notably, ZIP7 is markedly upregulated in cardiac mitochondria from patients with heart failure (HF), whereas mitochondrial PINK1 accumulation and mitophagy were suppressed. Furthermore, ZIP7 cKO reduced mitochondrial ROS generation and myocardial infarction via a PINK1-dependet manner, whereas overexpression of ZIP7 exacerbated myocardial infarction. Our findings identify upregulation of ZIP7 leading to suppression of mitophagy as a critical feature of myocardial reperfusion injury. A timely suppression of cardiac ZIP7 upregulation or inactivation of ZIP7 is essential for the treatment of reperfusion injury.


Subject(s)
Cation Transport Proteins , Myocardial Reperfusion Injury , Reperfusion Injury , Animals , Carrier Proteins , Cation Transport Proteins/genetics , Endoplasmic Reticulum/metabolism , Humans , Mice , Mitochondria, Heart/metabolism , Mitophagy , Protein Kinases/metabolism , Zinc
2.
J Exp Clin Cancer Res ; 40(1): 199, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34154618

ABSTRACT

BACKGROUND: Zinc transporters have been found to be associated with the pathogenesis of numerous human diseases including cancer. As the most lethal gynecologic malignancy, ovarian cancer is characterized by rapid progression and widespread metastases. However, the function and underlying mechanism of zinc transporters in ovarian cancer metastasis remain unclear. METHODS: The relationship between zinc transporter gene expressions and clinical outcomes of ovarian cancer was assessed with the online database Kaplan-Meier plotter ( http://kmplot.com/analysis/ ). Immunohistochemistry was performed to investigate the prognostic importance of ZIP13. The expression of ZIP13 in ovarian cancer cell lines was depleted to explore its effect on proliferation, adhesion, migration, and invasion both in vitro and in vivo assays. RNA-Seq, quantitative RT-PCR, and western blot analysis were performed to explore ZIP13-regulated downstream target genes. RESULTS: The expressions of several zinc transporters were highly associated the clinical outcomes of ovarian cancer patients. Among them, high ZIP13 expression was an independent prognostic factor for poor survival in patients with ovarian cancer. ZIP13 knockout suppressed the malignant phenotypes of ovarian cancer cells both in vitro and in vivo. Further investigation revealed that ZIP13 regulated intracellular zinc distribution and then affected the expressions of genes involved in extracellular matrix organization and cytokine-mediated signaling pathway. This led to the activation of Src/FAK pathway with increased expressions of pro-metastatic genes but decreased expressions of tumor suppressor genes. CONCLUSIONS: ZIP13 is shown to be a novel driver of metastatic progression by modulating the Src/FAK signaling pathway, which may serve as a promising biomarker for prognostic evaluation and targeted therapy in ovarian cancer.


Subject(s)
Cation Transport Proteins/metabolism , Focal Adhesion Kinase 1/metabolism , Oncogene Protein pp60(v-src)/metabolism , Ovarian Neoplasms/metabolism , Animals , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Female , Humans , Mice , Middle Aged , Neoplasm Metastasis , Ovarian Neoplasms/pathology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...