Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35268853

ABSTRACT

Adjusting the microstructure through the deformation process is one of the ways to improve the properties of Mg alloys. Most studies have focused on the influence of the microstructure after deformation treatment on the mechanical properties of Mg alloys. In this paper, extruded and forged Mg-Gd-Y-Nd-Zr alloys were selected to investigate the corrosion performance of two deformed magnesium alloys immersed in 0.6 M NaCl solution using a hydrogen evolution test, a weight loss test, an immersion experiment, and an electrochemical test. The results showed that WE43 alloys undergoing different deformation treatments presented different microstructures, which led to different corrosion behaviors and corrosion resistance. The extruded WE43 alloy showed uniform corrosion, while the forged WE43 alloy suffered severe local galvanic corrosion. Meanwhile, the corrosion rate of the forged WE43 alloy was about four times faster than that of the extruded WE43 alloy.

2.
Materials (Basel) ; 14(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34885294

ABSTRACT

As a kind of potential biomedical material, Mg-Ca alloy has attracted much attention. However, the role of Ca-containing intermetallics in microgalvanic corrosion is still controversial. In 0.6 mol/L NaCl and Na2SO4 solutions, the microgalvanic corrosion behavior of the second phase and Mg matrix of Mg-Ca and Mg-Al-Ca alloys was examined. It was confirmed that the Mg2Ca phase acts as a microanode in microgalvanic corrosion in both NaCl and Na2SO4 solutions, with the Mg matrix acting as the cathode and the Al2Ca phase acting as the microcathode to accelerate corrosion of the adjacent Mg matrix. It was also found that Cl- and SO42- have different sensibilities to microgalvanic corrosion.

3.
Inorg Chem ; 60(4): 2614-2622, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33494599

ABSTRACT

CdSe/Cu core/shell nanowires (NWs) are successfully synthesized by a wet chemical method for the first time. By utilizing the solution-liquid-solid (SLS) mechanism, CdSe NWs are fabricated by Bi seeds, which act as catalysts. In the subsequent radial overcoating of the Cu shell on the CdSe NWs, Fe ions have been proven to be an indispensable and efficient catalyzer. The thickness of the Cu shell could be well controlled in the range of 3 to 6 nm by varying the growth temperature (from 300 to 360 °C). Our synthetic strategy pioneers a new possibility for the controlled synthesis of semiconductor-metal heterostructure NWs (especially for II-VI semiconductors), such as CdS/Cu, ZnS/Au, and ZnO/Ag, which had broad application prospects in photoconductors, thin-film transistors, and light-emitting diodes. Theoretically, electrons flow from a higher Fermi-level material to the bottom Fermi-level at the metal-semiconductor heterojunction interface, which aligns the Fermi level and establishes the Schottky barrier. It leads to excess negative charges in metals and excess positive charges in semiconductors. Therefore, those effective electron traps reduce the probability of photogenerated electron-hole pair recombination efficiently, which has been widely applied in solar cells, sensors, photocatalysis, and energy storage. The breakthrough and innovation of this synthesis method have opened up a new synthetic route with a mild reaction environment, low energy consumption, and convenience.

4.
Materials (Basel) ; 13(22)2020 Nov 22.
Article in English | MEDLINE | ID: mdl-33266406

ABSTRACT

Spent Pot Lining First Cut (shortened to SPL-1cut) is a solid waste discharged from a primary aluminum electrolytic production process. SPL-1cut is classified as hazardous waste in China because it contains large amounts of soluble sodium fluoride and a tiny amount of cyanide. Most of SPL-1cut is carbon-about 65%-and its calorific value is 22.587 MJ∙kg-1. There is a high level of sodium fluoride in SPL-1cut-about 15%-and sodium fluoride is randomly distributed in the carbon granule. The recycling of SPL-1cut using dolomite as a reactant, based on the characteristics of the two-step decomposition of dolomite at a high temperature, is discussed. The recycling of SPL-1cut was performed under the following heating conditions: the heating temperature was 850 °C, the holding time was 120 min, and 40% of the dolomite was added to the SPL-1cut. It was found that the cyanides are completely oxidized and decomposed, and dolomite is decomposed into MgO and active CaCO3. At the same time, NaF reacts with active CaCO3 and converts into CaF2. The results provide references for using SPL-1cut as an alternative fuel in the dolomite calcination process of the Pidgeon Process.

5.
Nanomaterials (Basel) ; 9(3)2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30862017

ABSTRACT

We report on the synthesis of CuInTe2 nanoparticles and their function in photovoltaic equipment, such as solar cells. Under certain synthesis conditions, the CuInTe2 nanocrystals form shape with nanocrystals, nanorods or nanocubes. It was found that CuTe nanocrystals could be converted to CuInTe2 by addition of an In reactant. CuInTe2 nanorods were synthesized using this method.

6.
R Soc Open Sci ; 6(2): 181602, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30891279

ABSTRACT

We report a novel synthesis of monodisperse samples of copper telluride with crystallinity and stoichiometry corresponding to forms of rickardite, Cu3-x Te2 (x < 1). This synthesis makes use of a ligand balanced reaction to allow control over shape and size by varying the relative and absolute concentration of oleylamine to stearic acid. The rickardite samples presented here display size dependent plasmon peaks in the near infrared and direct energy band gaps between 1.7 and 2.3 eV. As such they may find utility in photovoltaic, thermoelectric or as novel optical materials for study of surface plasmons.

7.
RSC Adv ; 9(61): 35780-35785, 2019 Oct 31.
Article in English | MEDLINE | ID: mdl-35528051

ABSTRACT

CuIn x Ga1-x Se2 (CIGS) nanowires were synthesized for the first time through an in situ cation exchange reaction by using CuInSe2 (CIS) nanowires as a template material and Ga-OLA complexes as the Ga source. These CIGS nanowires maintain nearly the same morphology as CIS nanowires, and the Ga/In ratio can be controlled through adjusting the concentration of Ga-OLA complexes. The characteristics of adjustable band gap and highly effective light-absorbances have been achieved for these CIGS nanowires. The light-absorbing layer in photovoltaic devices (PVs) can be assembled by employing CIGS nanowires as a solar-energy material for enhancing the photovoltaic response. The highest power conversion efficiency of solar thin film semiconductors is more than 20%, achieved by the Cu(In x Ga1-x )Se2 (CIGS) thin-film solar cells. Therefore, these CIGS nanowires have a great potential to be utilized as light absorber materials for high efficiency single nanowire solar cells and to generate bulk heterojunction devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...