Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 508
Filter
1.
Pharmacol Rep ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954373

ABSTRACT

Ischemic stroke is a leading cause of adult disability and death worldwide. The primary treatment for cerebral ischemia patients is to restore blood supply to the ischemic region as quickly as possible. However, in most cases, more severe tissue damage occurs, which is known as cerebral ischemia/reperfusion (I/R) injury. The pathological mechanisms of brain I/R injury include mitochondrial dysfunction, oxidative stress, excitotoxicity, calcium overload, neuroinflammation, programmed cell death and others. Propofol (2,6-diisopropylphenol), a short-acting intravenous anesthetic, possesses not only sedative and hypnotic effects but also immunomodulatory and neuroprotective effects. Numerous studies have reported the protective properties of propofol during brain I/R injury. In this review, we summarize the potential protective mechanisms of propofol to provide insights for its better clinical application in alleviating cerebral I/R injury.

2.
Stroke ; 55(8): 2173-2183, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38979609

ABSTRACT

Endovascular treatment (EVT) for acute ischemic stroke is one of the most efficacious and effective treatments in medicine, yet globally, its implementation remains limited. Patterns of EVT underutilization exist in virtually any health care system and range from a complete lack of access to selective undertreatment of certain patient subgroups. In this review, we outline different patterns of EVT underutilization and possible causes. We discuss common challenges and bottlenecks that are encountered by physicians, patients, and other stakeholders when trying to establish and expand EVT services in different scenarios and possible pathways to overcome these challenges. Lastly, we discuss the importance of implementation research studies, strategic partnerships, and advocacy efforts to mitigate EVT underutilization.


Subject(s)
Endovascular Procedures , Ischemic Stroke , Thrombectomy , Humans , Thrombectomy/methods , Endovascular Procedures/methods , Ischemic Stroke/surgery , Ischemic Stroke/therapy , Stroke/surgery , Stroke/therapy
3.
J Colloid Interface Sci ; 675: 1080-1090, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018635

ABSTRACT

Premature drug release in chemotherapy and hypoxic conditions in photodynamic therapy (PDT) are perplexing problems in tumor treatment. Thus, it is of great significance to develop the novel therapeutic system with controllable drug release and effective oxygen generation. Herein, a pH-responsive oxygen self-sufficient smart nanoplatform (named DHCCC), integrating hollow mesoporous silica nanoparticles (HMSNs), chitosan (CS), doxorubicin hydrochloride (DOX), chlorin e6 (Ce6) and catalase (CAT), is fabricated to enhance the tumor therapeutic efficacy efficiently through avoiding premature drug release and mitigating hypoxia of tumor microenvironment (TME). The drug DOX can be efficiently loaded into the HMSNs with large cavity and be controllable released because of the pH responsiveness of CS to the weak acidic TME, thereby elevating the chemotherapy efficacy. Meanwhile, CAT can catalyze the decomposition of endogenous hydrogen peroxide in situ generating oxygen to alleviate the hypoxia and enhance the PDT efficiency considerably. In vitro and in vivo results demonstrate that the combined chemo-photodynamic therapy based on the DHCCC nanoplatform exerts more effective antitumor efficacy than chemotherapy or PDT alone. The current study provides a promising inspiration to construct the pH-responsive oxygen self-sufficient smart nanomedicine with potentials to prevent premature drug leakage and overcome hypoxia for efficient tumor therapy.

4.
Oncogene ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020072

ABSTRACT

Perineural invasion (PNI) is an adverse prognostic feature of pancreatic ductal adenocarcinoma (PDAC). However, the understanding of the interactions between tumors and neural signaling within the tumor microenvironment is limited. In the present study, we found that MUC21 servers as an independent risk factor for poor prognosis in PDAC. Furthermore, we demonstrated that MUC21 promoted the metastasis and PNI of PDAC cells by activating JNK and inducing epithelial-mesenchymal transition (EMT). Mechanistically, glial cell-derived neurotrophic factor, secreted by Schwann cells, phosphorylates the intracellular domain S543 of MUC21 via CDK1 in PDAC cells, facilitating the interaction between MUC21 and RAC2. This interaction leads to membrane anchoring and activation of RAC2, which in turn activates the JNK/ZEB1/EMT axis, ultimately enhancing the metastasis and PNI of PDAC cells. Our results present a novel mechanism of PNI, suggesting that MUC21 is a potential prognostic marker and therapeutic target for PDAC.

5.
Article in English | MEDLINE | ID: mdl-38923489

ABSTRACT

Various training-based spatial filtering methods have been proposed to decode steady-state visual evoked potentials (SSVEPs) efficiently. However, these methods require extensive calibration data to obtain valid spatial filters and temporal templates. The time-consuming data collection and calibration process would reduce the practicality of SSVEP-based brain-computer interfaces (BCIs). Therefore, we propose a temporally local weighting-based phase-locked time-shift (TLW-PLTS) data augmentation method to augment training data for calculating valid spatial filters and temporal templates. In this method, the sliding window strategy using the SSVEP response period as a time-shift step is to generate the augmented data, and the time filter which maximises the temporally local covariance between the original template signal and the sine-cosine reference signal is used to suppress the temporal noise in the augmented data. For the performance evaluation, the TLW-PLTS method was incorporated with state-of-the-art training-based spatial filtering methods to calculate classification accuracies and information transfer rates (ITRs) using three SSVEP datasets. Compared with state-of-the-art training-based spatial filtering methods and other data augmentation methods, the proposed TLW-PLTS method demonstrates superior decoding performance with fewer calibration data, which is promising for the development of fast-calibration BCIs.


Subject(s)
Algorithms , Brain-Computer Interfaces , Electroencephalography , Evoked Potentials, Visual , Humans , Evoked Potentials, Visual/physiology , Electroencephalography/methods , Calibration , Male , Adult , Female , Young Adult , Reproducibility of Results , Photic Stimulation/methods , Healthy Volunteers
6.
J Stroke Cerebrovasc Dis ; 33(8): 107814, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880364

ABSTRACT

AIMS: To investigate the association of the genetic predisposition of specific gut microbiotas with the clinical outcome of ischemic stroke. METHODS: We leveraged publicly available genome-wide association study (GWAS) data to perform Mendelian randomization (MR) analysis. The gut microbiota-related GWAS data from 18,340 individuals from the international consortium MiBioGen was used. The summary data for functional outcomes after ischemic stroke was obtained from the Genetics of Ischemic Stroke Functional Outcome (GISCOME) network meta-analysis. The primary outcomes were judged by the modified Rankin Scale (mRS). The principal analyses were conducted using the inverse-variance weighted (IVW) MR method. The Cochran's Q test, weighted median, MR-Egger regression, leave-one-SNP-out analysis, MR-Pleiotropy Residual Sum, and Outlier methods were adopted as sensitivity analyses. Furthermore, we performed bi-directional MR analysis and the MR Steiger directionality test to examine the direction of the causal relations. RESULTS: The results demonstrated that the genetic predisposition of genus Lactococcus, genus Ruminococcaceae NK4A214 group, family Peptostreptococcaceae, and genus Odoribacter was positively associated with favorable functional outcome after ischemic stroke. Genus Collinsella, genus Ruminococcaceae UCG005, genus Akkermansia, genus Eubacterium oxidoreducens group, and family Verrucomicrobiaceae were identified to be associated with worse functional outcomes after ischemic stroke. Our results showed no evidence of heterogeneity, directional pleiotropic effects, or collider bias, and the sensitivity of our analysis was acceptable. CONCLUSION: The genetic predisposition of different gut microbiotas was associated with the clinical outcome of ischemic stroke. Microbiota adjustment was a promising method to improve the clinical outcome of ischemic stroke.

7.
Front Plant Sci ; 15: 1387951, 2024.
Article in English | MEDLINE | ID: mdl-38903422

ABSTRACT

Balancing the biomass requirements of different functions for the purpose of population reproduction and persistence can be challenging for alpine plants due to extreme environmental stresses from both above- and below-ground sources. The presence of ecosystem engineers in alpine ecosystems effectively alleviates microenvironmental stresses, hence promoting the survival and growth of other less stress-tolerant species. However, the influence of ecosystem engineers on plant resource allocation strategies remains highly unexplored. In this study, we compared resource allocation strategies, including biomass accumulation, reproductive effort (RE), root fraction (RF), as well as relationships between different functions, among four alpine plant species belonging to Gentianaceae across bare ground, tussock grass-, cushion-, and shrub-engineered microhabitats. Shrub-engineered microhabitats exerted the strongest effects on regulating plant resource allocation patterns, followed by tussock grass- and cushion-engineered microhabitats. Additionally, apart from microhabitats, population background and plant life history also significantly influenced resource allocation strategies. Generally, plants established within engineered microhabitats exhibited higher biomass accumulation, as well as increased flower, leaf and stem production. Furthermore, individuals within engineered microhabitats commonly displayed lower RF, indicating a greater allocation of resources to above-ground functions while reducing allocation to root development. RE of annual plants was significantly higher than that of perennial plants. However, individuals of annual plants within engineered microhabitats showed lower RE compared to their counterparts in bare ground habitats; whereas perennial species demonstrated similar RE between microhabitat types. Moreover, RE was generally independent of plant size in bare-ground habitats but exhibited size-dependency in certain populations for some species within specific engineered microhabitat types. However, size-dependency did exist for absolute reproductive and root biomass allocation in most of the cases examined here. No trade-offs were observed between flower mass and flower number, nor between leaf mass and leaf number. The capacity of ecosystem engineers to regulate resource allocation strategies in associated plants was confirmed. However, the resource allocation patterns resulted synergistically from the ecosystem engineering effects, population environmental backgrounds, and plant life history strategies. In general, such regulations can improve individual survival and reproductive potential, potentially promoting population persistence in challenging alpine environments.

8.
J Neurointerv Surg ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38830670

ABSTRACT

BACKGROUND: Multiple studies and meta-analyses have described the technical and clinical outcomes in large cohorts of aneurysm patients treated with flow diverters (FDs). Variations in evaluation methodology complicate making comparisons among studies, hinder understanding of the device behavior, and pose an obstacle in the assessment of further advances in FD therapy. METHODS: A multidisciplinary panel of neurointerventionalists, imaging experts, and neuroradiologists convened with the goal of establishing consensus recommendations for the standardization of image analyses in FD studies. RESULTS: A standardized methodology is proposed for evaluating and reporting radiological outcomes of FD treatment of intracranial aneurysms. The recommendations include general imaging considerations for clinical studies and evaluations of longitudinal changes, such as neointimal lining and stenosis. They cover standards for classification of aneurysm location, morphology, measurements, as well as the assessment of aneurysm occlusion, wall apposition, and neck coverage. These reporting standards further define four specific braid deformation patterns: foreshortening, fish-mouthing, braid bump deformation, and braid collapse, collectively termed 'F2B2'. CONCLUSIONS: When widely applied, standardization of methods of measuring and reporting outcomes will help to harmonize the assessment of treatment outcomes in clinical studies, help facilitate communication of results among specialists, and help enable research and development to focus on specific aspects of FD techniques and technology.

9.
Heliyon ; 10(11): e31817, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38841486

ABSTRACT

Objective: Grounded in self-determination theory and the stimulus-organism-response framework, this study examines factors that affect college students' leisure-time physical activity by considering the basic psychological needs satisfaction (i.e., autonomy, competence, and relatedness), self-determined motivation, emotional and cognitive involvement. Methods: The sample included 526 students (47.8 % male; 57.2 % female) from four universities in central China. A structural equation model was used to analyze associations among variables. Results: The satisfaction of all three basic psychological needs had a significant positive impact on emotional involvement. Additionally, autonomy and competence need satisfaction had a significant positive impact on self-determined motivation and cognitive involvement. However, contrary to our expectation, there was no significant effect of relatedness need satisfaction on self-determined motivation and cognitive involvement. Furthermore, emotional involvement was found to have a significant effect on leisure-time physical activity intention for male students. Interestingly, the relationship between cognitive involvement and leisure-time physical activity intention is significant, but this effect was observed only among female students. Conclusion: Pedagogical strategies and tactics better satisfied students' psychological needs, promote physical education classes emotional and cognitive involvement, therefore, achieve autonomous active lifestyle behaviors in leisure time.

10.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(3): 281-284, 2024 May 30.
Article in Chinese | MEDLINE | ID: mdl-38863094

ABSTRACT

In magnetic resonance examination, the interaction between implants and the radio frequency (RF) fields induces heating in human tissue and may cause tissue damage. To assess the RF-induced heating of implants, three steps should be executed, including electromagnetic model construction, electromagnetic model validation, and virtual human body simulations. The crucial step of assessing RF-induced heating involves the construction of a test environment for electromagnetic model validation. In this study, a hardware environment, comprised of a RF generation system, electromagnetic field measurement system, and a robotic arm positioning system, was established. Furthermore, an automated control software environment was developed using a Python-based software development platform to enable the creation of a high-precision automated integrated test environment. The results indicate that the electric field generated in this test environment aligns well with the simulated electric field, making it suitable for assessing the RF-induced heating effects of implants.


Subject(s)
Electromagnetic Fields , Hot Temperature , Prostheses and Implants , Radio Waves , Software , Humans , Magnetic Resonance Imaging
11.
Acta Physiol (Oxf) ; 240(7): e14159, 2024 07.
Article in English | MEDLINE | ID: mdl-38767438

ABSTRACT

AIM: Ferroptosis is a novel type of programmed cell death that performs a critical function in diabetic nephropathy (DN). Augmenter of liver regeneration (ALR) exists in the inner membrane of mitochondria, and inhibits inflammation, apoptosis, and oxidative stress in acute kidney injury; however, its role in DN remains unexplored. Here, we aimed to identify the role of ALR in ferroptosis induction and macrophage activation in DN. METHODS: The expression of ALR was examined in DN patients, db/db DN mice, and HK-2 cells treated with high glucose (HG). The effects of ALR on ferroptosis and macrophage activation were investigated with ALR conditional knockout, lentivirus transfection, transmission electron microscopy, qRT-PCR and western blotting assay. Mass spectrometry and rescue experiments were conducted to determine the mechanism of ALR. RESULTS: ALR expression was reduced in the kidney tissues of DN patients and mice, serum of DN patients, and HG-HK-2 cells. Moreover, the inhibition of ALR promoted ferroptosis, macrophage activation, and DN progression. Mechanistically, ALR can directly bind to carnitine palmitoyltransferase-1A (CPT1A), the key rate-limiting enzyme of fatty acid oxidation (FAO), and inhibit the expression of CPT1A to regulate lipid metabolism involving FAO and lipid droplet-mitochondrial coupling in DN. CONCLUSION: Taken together, our findings revealed a crucial protective role of ALR in ferroptosis induction and macrophage activation in DN and identified it as an alternative diagnostic marker and therapeutic target for DN.


Subject(s)
Carnitine O-Palmitoyltransferase , Diabetic Nephropathies , Ferroptosis , Lipid Metabolism , Macrophage Activation , Animals , Humans , Male , Mice , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/genetics , Ferroptosis/physiology , Lipid Metabolism/physiology , Mice, Inbred C57BL , Mice, Knockout , Oxidoreductases Acting on Sulfur Group Donors
12.
J Fungi (Basel) ; 10(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786720

ABSTRACT

The fermentation of a soil-derived fungus Acremonium sp. led to the isolation of thirteen ascochlorin congeners through integrated genomic and Global Natural Product Social (GNPS) molecular networking. Among the isolated compounds, we identified two unusual bicyclic types, acremochlorins O (1) and P (2), as well as two linear types, acremochlorin Q (3) and R (4). Compounds 1 and 2 contain an unusual benzopyran moiety and are diastereoisomers of each other, the first reported for the ascochlorins. Additionally, we elucidated the structure of 5, a 4-chloro-5-methylbenzene-1,3-diol with a linear farnesyl side chain, and confirmed the presence of eight known ascochlorin analogs (6-13). The structures were determined by the detailed interpretation of 1D and 2D NMR spectroscopy, MS, and ECD calculations. Compounds 3 and 9 showed potent antibacterial activity against Staphylococcus aureus and Bacillus cereus, with MIC values ranging from 2 to 16 µg/mL.

13.
Autophagy ; : 1-18, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38797513

ABSTRACT

The dysregulation of membrane protein expression has been implicated in tumorigenesis and progression, including hepatocellular carcinoma (HCC). In this study, we aimed to identify membrane proteins that modulate HCC viability. To achieve this, we performed a CRISPR activation screen targeting human genes encoding membrane-associated proteins, revealing TMX2 as a potential driver of HCC cell viability. Gain- and loss-of-function experiments demonstrated that TMX2 promoted growth and tumorigenesis of HCC. Clinically, TMX2 was an independent prognostic factor for HCC patients. It was significantly upregulated in HCC tissues and associated with poor prognosis of HCC patients. Mechanistically, TMX2 was demonstrated to promote macroautophagy/autophagy by facilitating KPNB1 nuclear export and TFEB nuclear import. In addition, TMX2 interacted with VDAC2 and VADC3, assisting in the recruitment of PRKN to defective mitochondria to promote cytoprotective mitophagy during oxidative stress. Most interestingly, HCC cells responded to oxidative stress by upregulating TMX2 expression and cell autophagy. Knockdown of TMX2 enhanced the anti-tumor effect of lenvatinib. In conclusion, our findings emphasize the pivotal role of TMX2 in driving the HCC cell viability by promoting both autophagy and mitophagy. These results suggest that TMX2 May serve as a prognostic marker and promising therapeutic target for HCC treatment.Abbreviation: CCCP: Carbonyl cyanide 3-chlorophenylhydrazone; Co-IP: co-immunoprecipitation; CRISPR: clustered regularly interspaced short palindromic repeat; ER: endoplasmic reticulum; HCC: hepatocellular carcinoma; KPNB1: karyopherin subunit beta 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; TFEB: transcription factor EB; TMX2: thioredoxin related transmembrane protein 2; VDAC2: voltage dependent anion channel 2; VDAC3: voltage dependent anion channel 3; WB: western blot.

14.
Small ; : e2401770, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764303

ABSTRACT

Ultrathin PtSe2 ribbons can host spin-polarized edge states and distinct edge electrocatalytic activity, emerging as a promising candidate for versatile applications in various fields. However, the direct synthesis is still challenging and the growth mechanism is still unclear. Herein, the arrayed growth of ultrathin PtSe2 ribbons on bunched vicinal Au(001) facets, via a facile chemical vapor deposition (CVD) route is reported. The ultrathin PtSe2 flakes can transform from traditional irregular shapes to desired ribbon shapes by increasing the height of bunched and unidirectionally oriented Au steps (with step height hstep) is found. This crossover, occurring at hstep ≈ 3.0 nm, defines the tailored growth from step-flow to single-terrace-confined modes, as validated by density functional theory calculations of the different system energies. On the millimeter-scale single-crystal Au(001) films with aligned steps, the arrayed ultrathin PtSe2 ribbons with tunable width of ≈20-1000 nm, which are then served as prototype electrocatalysts for hydrogen evolution reaction (HER) is achieved. This work should represent a huge leap in the direct synthesis and the mechanism exploration of arrayed ultrathin transition-metal dichalcogenides (TMDCs) ribbons, which should stimulate further explorations of the edge-related physical properties and practical applications.

15.
Materials (Basel) ; 17(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38612108

ABSTRACT

Tensile-compression fatigue deformation tests were conducted on AZ31 magnesium alloy at room temperature. Electron backscatter diffraction (EBSD) scanning electron microscopy was used to scan the microstructure near the fatigue fracture surface. It was found that lamellar {10-11}-{10-12} secondary twins (STs) appeared inside primary {10-11} contraction twins (CTs), with a morphology similar to the previously discovered {10-12}-{10-12} STs. However, through detailed misorientation calibration, it was determined that this type of secondary twin is {10-11}-{10-12} ST. Through calculation and analysis, it was found that the matrix was under compressive stress in the normal direction (ND) during fatigue deformation, which was beneficial for the activation of primary {10-11} CTs. The local strain accommodation was evaluated based on the geometric compatibility parameter (m') combined with the Schmid factor (SF) of the slip system, leading us to propose and discuss the possible formation mechanism of this secondary twin. The analysis results indicate that when the local strain caused by basal slip at the twin boundaries cannot be well transmitted, {10-11}-{10-12} STs are activated to coordinate the strain, and different loading directions lead to different formation mechanisms. Moreover, from the microstructure characterization near the entire fracture surface, we surmise that the presence of such secondary twins is not common.

16.
Gut Liver ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38638101

ABSTRACT

Background/Aims: : The occurrence and development of circular RNAs in gastric cancer (GC) has attracted increasing attention. This study focused on investigating the biological role and molecular mechanism of circ_0043947 in GC. Methods: : The expression levels of circ_0043947, miR-384 and CAMP response element binding protein (CREB1) were determined by quantitative real-time polymerase chain reaction or Western blotting. Cell proliferation, migration, and invasion, the cell cycle and apoptosis were determined using a cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, colony formation assay, wound healing assay, transwell assay, and flow cytometry assay. The interaction between miR-384 and circ_0043947 or CREB1 was verified by dual-luciferase reporter assay and RNA pull-down assay. The in vivo assay was conducted using a xenograft mouse model. Results: : Circ_0043947 and CREB1 expression levels were significantly upregulated, whereas miR-384 expression levels were downregulated in GC tissues and cells. Functionally, knockdown of circ_0043947 inhibited cell proliferation, migration and invasion and induced G0/G1 phase arrest and apoptosis in vitro. Circ_0043947 could upregulate CREB1 expression by directly sponging miR-384. Rescue experiments showed that a miR-384 inhibitor significantly reversed the inhibitory effect of si-circ_0043947 on GC progression, and CREB1 overexpression significantly reversed the inhibitory effect of miR-384 mimics on the progression of GC cells. Furthermore, silencing of circ_0043947 inhibited tumor growth in vivo. Conclusions: : Circ_0043947 acted as an oncogenic factor in GC to mediate GC cell proliferation, migration, and invasion, the cell cycle and apoptosis by regulating the miR-384/CREB1 axis. Circ_0043947 may be a potential target for GC diagnosis and therapy.

17.
J Biomech ; 167: 112093, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38615480

ABSTRACT

In general, muscle activity can be directly measured using Electromyography (EMG) or calculated with musculoskeletal models. However, both methods are not suitable for non-technical users and unstructured environments. It is desired to establish more portable and easy-to-use muscle activity estimation methods. Deep learning (DL) models combined with inertial measurement units (IMUs) have shown great potential to estimate muscle activity. However, it frequently occurs in clinical scenarios that a very small amount of data is available and leads to limited performance of the DL models, while the augmentation techniques to efficiently expand a small sample size for DL model training are rarely used. The primary aim of the present study was to develop a novel DL model to estimate the EMG envelope during gait using IMUs with high accuracy. A secondary aim was to develop a novel model-based data augmentation method to improve the performance of the estimation model with small-scale dataset. Therefore, in the present study, a time convolutional network-based generative adversarial network, namely MuscleGAN, was proposed for data augmentation. Moreover, a subject-independent regression DL model was developed to estimate EMG envelope. Results suggested that the proposed two-stage method has better generalization and estimation performance than the commonly used existing methods. Pearson correlation coefficient and normalized root-mean-square errors derived from the proposed method reached up to 0.72 and 0.13, respectively. It was indicated that the MuscleGAN indeed improved the estimation accuracy of lower limb EMG envelope from 70% to 72%. Thus, even using only two IMUs and a very small-scale dataset, the proposed model is still capable of accurately estimating lower limb EMG envelope, demonstrating considerable potential for its application in clinical and daily life scenarios.


Subject(s)
Gait , Neural Networks, Computer , Gait/physiology , Electromyography/methods , Muscle, Skeletal/physiology , Attention
18.
Int J Biol Macromol ; 268(Pt 2): 131735, 2024 May.
Article in English | MEDLINE | ID: mdl-38653424

ABSTRACT

The CMC-PNIPAM hydrogel with semi-interpenetrating structure and temperature-sensitivity was prepared by in-situ polymerization of N-isopropylacrylamide (NIPAM) in sodium carboxymethylcellulose (CMC) solution at room temperature. The mass ratio of CMC to NIPAM was a key factor influencing the network structure and property of CMC-PNIPAM hydrogel. The low critical phase transition temperature (LCST) of CMC-PNIPAM hydrogels increased from 34.4 °C to 35.8 °C with the mass ratio of CMC to NIPAM rising from 0 to 1.2. The maximum compressive stress of CMC-PNIPAM hydrogel reached to 26.7 kPa and the relaxation elasticity was 52 % at strain of 60 %. The viscoelasticity of CMC-PNIPAM hydrogel was consistent with the generalized Maxwell model. The maximum swelling ratio in deionized water was 170.25 g·g-1 (dried hydrogel) with swelling rate of 2.57 g·g-1·min-1 at 25 °C. CMC-PNIPAM hydrogel hardly absorbed water above LCST, but the swollen hydrogel could release water at the rate of 0.36 g·g-1·min-1 once exceeding LCST. The test of water retention showed that soil mixed with 2 wt% dried CMC-PNIPAM hydrogel could retain 13.08 wt% water after 30 days at 25 °C that was 4.4 times than that of controlled soil without CMC-PNIPAM hydrogel. The semi-interpenetrating CMC-PNIPAM hydrogel showed a potential to conserve water responding to temperature.


Subject(s)
Acrylic Resins , Carboxymethylcellulose Sodium , Hydrogels , Temperature , Water , Acrylic Resins/chemistry , Water/chemistry , Hydrogels/chemistry , Carboxymethylcellulose Sodium/chemistry , Phase Transition , Viscosity , Acrylamides/chemistry
19.
Sci Total Environ ; 927: 172044, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38554953

ABSTRACT

Sedimentary records of polycyclic aromatic hydrocarbons (PAHs) and phthalates could reflect energy consumption and industrial production adjustment. However, there is limited knowledge about their effects on variations of PAH and phthalate compositions in the sediment core. The PAH and phthalate sedimentary records in Huguangyan Maar Lake in Guangdong, China were constructed, and random forest models were adopted to quantify the associated impact factors. Sums of sixteen PAH (∑16 PAH) and seven phthalate (∑7 PAE) concentrations in the sediment ranged from 28.8 to 1110 and 246-4290 µg/kg dry weight in 1900-2020. Proportions of 5-6 ring PAHs to the ∑16 PAHs increased from 32.0 %-40.7 % in 1900-2020 with increased coal and petroleum consumption, especially after 1980. However, those of 2-3 ring PAHs decreased from 30.7 % to 23.6 % due to the biomass substitution with natural gas. The proportions of bis (2-ethylhexyl) phthalate to the ∑7 PAEs decreased from 52.3 %-29.1 % in 1900-2020, while those of di-isobutyl phthalate increased (13.7 % to 42.3 %). The shift from traditional plasticizers to non-phthalates drove this transformation, though the primary plastic production is increasing. Our findings underscore the effectiveness of optimizing energy structures and updating chemical products in reducing organic pollution in aquatic environments.


Subject(s)
Environmental Monitoring , Geologic Sediments , Lakes , Phthalic Acids , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , China , Geologic Sediments/chemistry , Lakes/chemistry , Water Pollutants, Chemical/analysis , Phthalic Acids/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Economic Development
20.
Nat Prod Res ; : 1-5, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38501743

ABSTRACT

Two new megastigmane glycosides, (6 R,7E,9R)-3-oxo-α-ionyl-9-O-α-L-rhamnopyranosyl-(1''→4')-ß-D-glucopyranoside (1) and (6 R,7E,9R)-3-oxo-α-ionyl-9-O-ß-D-glucopyranosyl-(1''→6')-ß-D-glucopyranoside (2), together with six known analogues (3-8) were isolated from the leaves of Nicotiana tabacum. The structures of all metabolites were determined by comprehensive analysis of NMR and MS spectroscopic data as well as by comparison with those of previously reported. The in vitro anti-inflammatory activity of all isolates was evaluated using a lipopolysaccharide (LPS)-induced RAW264.7 cell inflammatory model, and the compounds 1, 3, 7, and 8 exhibited inhibition of LPS-induced NO production in RAW264.7 macrophage cells with IC50 values of 42.3-61.7 µM (positive control, dexamethasone, IC50 = 21.3 ± 1.2 µM).

SELECTION OF CITATIONS
SEARCH DETAIL
...