Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Mar Biotechnol (NY) ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833200

ABSTRACT

Specific cell depletion is a common means to study the physiological function of cell lineages and tissue regeneration. However, 100% depletion is difficult to achieve with existing cell depletion strategies. With the increasing maturity of CRISPR/Cas9 technology, it is increasingly used for the depletion of various cells. However, even with this technology, it is difficult to complete the depletion of specific gene knockout cells. For this reason, cell depletion with the use of repetitive sequences as the target of CRISPR/Cas9 was explored using zebrafish. All cells were used as the target cells for the first set of experiments. The results showed that injection of a mixture of DANA-gRNA and Cas9 mRNA into zygotes resulted in substantial cell apoptosis. Cells are almost invisible in the embryonic animal pole during the dome stage. The activities of the caspase-3 and caspase-9 proteins and the mRNA level of the P53 gene were significantly increased. Then, primordial germ cells (PGCs) in embryos were used as the target cells in subsequent experiments. To specifically knock out PGCs, we injected the mix of DANA-gRNA, pkop: Cas9 plasmid (the kop promotor allows Cas9 expression only in PGCs), and eGFP-nos3'UTR mRNA into zebrafish fertilized eggs. The results revealed that the activity of the caspase-3 protein was significantly increased, and the mRNA levels of P53, ku70, and ku80 were significantly upregulated, while the number of PGCs decreased gradually. Few PGCs labeled with GFP could be seen 20 h post-fertilization (hpf), and no PGCs could be seen at the germinal ridge 24 hpf. Therefore, the combination of CRISPR/Cas9 technology and repetitive sequences can achieve efficient cell depletion regardless of whether there is generalized expression or expression in specific cells. These results indicate that it is feasible to eliminate cells by using repeat sequences as CRISPR/Cas9 system target sites.

2.
Genes (Basel) ; 15(5)2024 05 17.
Article in English | MEDLINE | ID: mdl-38790265

ABSTRACT

The estrogen receptor signaling pathway plays an important role in vertebrate embryonic development and sexual differentiation. There are four major estrogen receptors in zebrafish: esr1, esr2a, esr2b and gper. However, the specific role of different estrogen receptors in zebrafish is not clear. To investigate the role of esr2b in zebrafish development and reproduction, this study utilized TALENs technology to generate an esr2b knockout homozygous zebrafish line. The number of eggs laid by esr2b knockout female zebrafish did not differ significantly from that of wild zebrafish. The embryonic development process of wild-type and esr2b knockout zebrafish was observed, revealing a significant developmental delay in the esr2b knockout zebrafish. Additionally, mortality rates were significantly higher in esr2b knockout zebrafish than in their wild-type counterparts at 24 hpf. The reciprocal cross experiment between esr2b knockout zebrafish and wild-type zebrafish revealed that the absence of esr2b resulted in a decline in the quality of zebrafish oocytes, while having no impact on sperm cells. The knockout of esr2b also led to an abnormal sex ratio in the adult zebrafish population, with a female-to-male ratio of approximately 1:7. The quantitative PCR (qPCR) and in situ hybridization results demonstrated a significant downregulation of cyp19ab1b expression in esr2b knockout embryos compared to wild-type embryos throughout development (at 2 dpf, 3 dpf and 4 dpf). Additionally, the estrogen-mediated induction expression of cyp19ab1b was attenuated, while the estradiol-induced upregulated expression of vtg1 was disrupted. These results suggest that esr2b is involved in regulating zebrafish oocyte development and sex differentiation.


Subject(s)
Aromatase , Sex Ratio , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/genetics , Female , Male , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Aromatase/genetics , Aromatase/metabolism , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Sex Differentiation/genetics , Oocytes/metabolism , Oocytes/growth & development
3.
Environ Pollut ; 347: 123789, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38490526

ABSTRACT

The co-occurrence of cyanobacterial blooms and nano-microplastic pollution in the water is becoming an emerging risk. To assess the combined hepatotoxicity of microcystin-LR (MC-LR) and polystyrene microplastics (PSMPs) on zebrafish (Danio rerio), male adult zebrafish were exposed to single MC-LR (0, 1, 5, 25 µg/L) and a mixture of MC-LR and PSMPs (100 µg/L). After 60 d exposure, the results indicated that PSMPs significantly increased the MC-LR bioaccumulation in the livers in contrast to the single 25 µg/L MC-LR treatment group. Moreover, the severity of hepatic pathological lesions was aggravated in the MC-LR + PSMPs treatment groups, which were mainly characterized by cellular vacuolar degeneration, swollen hepatocytes, and pyknotic nucleus. The ultrastructural changes also proved that PSMPs combined with MC-LR could enhance the swollen mitochondria and dilated endoplasmic reticulum. The biochemical results, including increased malondialdehyde (MDA) and decreased glutathione (GSH), indicated that PSMPs intensified the MC-LR-induced oxidative damage in the combined treatment groups. Concurrently, alterations of sod1 and keap1a mRNA levels also confirmed that PSMPs together with MC-LR jointly lead to enhanced oxidative injury. Our findings demonstrated that PSMPs enhanced the MC-LR bioavailability by acting as a vector and exacerbating the hepatic injuries and antioxidant dysfunction in zebrafish.


Subject(s)
Antioxidants , Marine Toxins , Water Pollutants, Chemical , Animals , Male , Zebrafish , Microplastics/toxicity , Plastics , Polystyrenes/toxicity , Microcystins/toxicity , Water Pollutants, Chemical/toxicity
4.
Iran J Biotechnol ; 21(2): e3325, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37228626

ABSTRACT

Background: SRC is a member of the membrane-associated non-receptor protein tyrosine kinase superfamily. It has been reported to mediate inflammation and cancer. However, the exact molecular mechanism involved is still not clear. Objectives: The current study was designed to explore the prognostic landscape of SRC and further investigate the relationship between SRC and immune infiltration in pan-cancer. Materials and Methods: Kaplan-Meier Plotter was used to detect the prognostic value of SRC in pan-cancer. Then using TIMER2.0 and CIBERSORT, the relationship between SRC and immune infiltration in pan-cancer was evaluated. Furthermore, the LinkedOmics database was used to screen SRC co-expressed genes, followed by functional enrichment of SRC co-expressed genes by Metascape online tool. STRING database and Cytoscape software were applied to construct and visualise the protein-protein interaction network of SRC co-expressed genes. MCODE plug-in was used to screen hub modules in the PPI network. The SRC co-expressed genes in hub modules were extracted, and the correlation analysis between interested SRC co-expressed genes and immune infiltration was conducted via TIMER2.0 and CIBERSORT. Results: Our study demonstrated that SRC expression was significantly associated with overall survival and relapse-free survival in multiple cancer types. In addition, SRC expression was significantly correlated with the immune infiltration of B cells, dendritic cells, CD4+ T cells, macrophages, and neutrophils in pan-cancer. The expression of SRC had shown to have close correlations with M1 macrophage polarisation in LIHC, TGCT, THCA, and THYM. Moreover, the genes that co-expressed with SRC in LIHC, TGCT, THCA, and THYM were mainly enriched in lipid metabolism. Besides, correlation analysis showed that SRC co-expressed genes associated with lipid metabolism were also significantly correlated with the infiltration and polarisation of macrophages. Conclusion: These results indicate that SRC can serve as a prognostic biomarker in pan-cancer and is related to macrophages infiltration and interacts with genes involved in lipid metabolism.

5.
Sci Total Environ ; 876: 162664, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36894083

ABSTRACT

The coexistence of eutrophication and plastic pollution in the aquatic environment is becoming a realistic water pollution problem worldwide. To investigate the microcystin-LR (MC-LR) bioavailability and the underlying reproductive interferences in the presence of polystyrene microplastic (PSMPs), zebrafish (Danio rerio) were exposed to individual MC-LR (0, 1, 5, and 25 µg/L) and combined MC-LR + PSMPs (100 µg/L) for 60 d. Our results showed that the existence of PSMPs increased the accumulation of MC-LR in zebrafish gonads compared to the MC-LR-only group. In the MC-LR-only exposure group, seminiferous epithelium deterioration and widened intercellular spaces were observed in the testis, and basal membrane disintegration and zona pellucida invagination were noticed in the ovary. Moreover, the existence of PSMPs exacerbated these injuries. The results of sex hormone levels showed that PSMPs enhanced MC-LR-induced reproductive toxicity, which is tightly related to the abnormal increase of 17ß-estradiol (E2) and testosterone (T) levels. The changes of gnrh2, gnrh3, cyp19a1b, cyp11a, and lhr mRNA levels in the HPG axis further proved that MC-LR combined with PSMPs aggravated reproductive dysfunction. Our results revealed that PSMPs could increase the MC-LR bioaccumulation by serving as a carrier and exaggerate the MC-LR-induced gonadal damage and reproductive endocrine disruption in zebrafish.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Male , Animals , Female , Plastics , Microplastics , Polystyrenes/toxicity , Gonads , Microcystins/toxicity , Water Pollutants, Chemical/toxicity
6.
Ecotoxicol Environ Saf ; 254: 114724, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36871356

ABSTRACT

Ammonia, as one of the primary water pollutants in aquaculture, has been shown to induce a wide range of ecotoxicological effects on aquatic animals. In order to investigate the antioxidant and innate immune responses in crustaceans disrupted by ammonia, red swamp crayfish (Procambarus clarkii) were exposed to 0, 15, 30, and 50 mg/L total ammonia nitrogen for 30 d, the alterations of antioxidant responses as well as innate immunity were studied. The results showed that the severity of hepatopancreatic injury were aggravated by the increasing ammonia levels, which were mainly characterized by tubule lumen dilatation and vacuolization. The swollen mitochondria and disappeared mitochondria ridges suggested that oxidative stress induced by ammonia targets the mitochondria. Concurrently, enhanced MDA levels, and decreased GSH levels as well as the decreased transcription and activity of antioxidant enzymes, including SOD, CAT, and GPx were noticed, which suggested that high concentrations of ammonia exposure induce oxidative stress in P. clarkii. Furthermore, a significant decrease of the hemolymph ACP, AKP, and PO along with the significant downregulation of immune-related genes (ppo, hsp70, hsp90, alf1, ctl) jointly indicated that ammonia stress inhibited the innate immune function. Our findings demonstrated that sub-chronic ammonia stress induced hepatopancreatic injury and exert suppressive effects on the antioxidant capacity as well as innate immunity of P. clarkii. Our results provide a fundamental basis for the deleterious effects of ammonia stress on aquatic crustaceans.


Subject(s)
Antioxidants , Astacoidea , Animals , Antioxidants/metabolism , Astacoidea/physiology , Ammonia/toxicity , Oxidative Stress , Immunity, Innate
7.
Hereditas ; 160(1): 11, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36907956

ABSTRACT

BACKGROUND: Acid sphingomyelinase deficiency (ASMD) disorder, also known as Niemann-Pick disease (NPD) is a rare genetic disease caused by mutations in SMPD1 gene, which encodes sphingomyelin phosphodiesterase (ASM). Except for liver and spleen enlargement and lung disease, two subtypes (Type A and B) of NDP have different onset times, survival times, ASM activities, and neurological abnormalities. To comprehensively explore NPD's genotype-phenotype association and pathophysiological characteristics, we collected 144 NPD cases with strict quality control through literature mining. RESULTS: The difference in ASM activity can differentiate NPD type A from other subtypes, with the ratio of ASM activity to the reference values being lower in type A (threshold 0.045 (4.45%)). Severe variations, such as deletion and insertion, can cause complete loss of ASM function, leading to type A, whereas relatively mild missense mutations generally result in type B. Among reported mutations, the p.Arg3AlafsX76 mutation is highly prevalent in the Chinese population, and the p.R608del mutation is common in Mediterranean countries. The expression profiles of SMPD1 from GTEx and single-cell RNA sequencing data of multiple fetal tissues showed that high expressions of SMPD1 can be observed in the liver, spleen, and brain tissues of adults and hepatoblasts, hematopoietic stem cells, STC2_TLX1-positive cells, mesothelial cells of the spleen, vascular endothelial cells of the cerebellum and the cerebrum of fetuses, indicating that SMPD1 dysfunction is highly likely to have a significant effect on the function of those cell types during development and the clinicians need pay attention to these organs or tissues as well during diagnosis. In addition, we also predicted 21 new pathogenic mutations in the SMPD1 gene that potentially cause the NPD, signifying that more rare cases will be detected with those mutations in SMPD1. Finally, we also analysed the function of the NPD type A cells following the extracellular milieu. CONCLUSIONS: Our study is the first to elucidate the effects of SMPD1 mutation on cell types and at the tissue level, which provides new insights into the genotype-phenotype association and can help in the precise diagnosis of NPD.


Subject(s)
Niemann-Pick Disease, Type A , Niemann-Pick Diseases , Sphingomyelin Phosphodiesterase , Humans , Endothelial Cells/metabolism , Endothelial Cells/pathology , Genetic Association Studies , Mutation , Niemann-Pick Disease, Type A/diagnosis , Niemann-Pick Disease, Type A/genetics , Niemann-Pick Disease, Type A/pathology , Niemann-Pick Diseases/diagnosis , Niemann-Pick Diseases/genetics , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism
8.
Front Genet ; 13: 1056224, 2022.
Article in English | MEDLINE | ID: mdl-36468018

ABSTRACT

Prostate cancer (PCa) is the most common malignancy. New biomarkers are in demand to facilitate the management. The role of the pinin protein (encoded by PNN gene) in PCa has not been thoroughly explored yet. Using The Cancer Genome Atlas (TCGA-PCa) dataset validated with Gene Expression Omnibus (GEO) and protein expression data retrieved from the Human Protein Atlas, the prognostic and diagnostic values of PNN were studied. Highly co-expressed genes with PNN (HCEG) were constructed for pathway enrichment analysis and drug prediction. A prognostic signature based on methylation status using HCEG was constructed. Gene set enrichment analysis (GSEA) and the TISIDB database were utilised to analyse the associations between PNN and tumour-infiltrating immune cells. The upregulated PNN expression in PCa at both transcription and protein levels suggests its potential as an independent prognostic factor of PCa. Analyses of the PNN's co-expression network indicated that PNN plays a role in RNA splicing and spliceosomes. The prognostic methylation signature demonstrated good performance for progression-free survival. Finally, our results showed that the PNN gene was involved in splicing-related pathways in PCa and identified as a potential biomarker for PCa.

9.
Mitochondrial DNA B Resour ; 7(9): 1656-1658, 2022.
Article in English | MEDLINE | ID: mdl-36147362

ABSTRACT

Onychostoma ovale (Pellegrin & Chevey, 1936) is an endemic cyprinid fish that is widely inhabited in southern China, Vietnam, and Laos. In the present study, we first reported the complete mitochondrial genome of O. ovale. The mitogenome contained 16,600 bp with AT content of 56.2% and comprised of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and one control region (D-loop). Phylogenetic analyses suggested that Onychostoma species formed two major clades and the subspecies of O. ovale had close relationship with O. rarum. The mitochondrial genome of O. ovale provided a key aid for population genetics and phylogenetic inferences of Onychostoma in future research.

10.
J Oncol ; 2022: 6768139, 2022.
Article in English | MEDLINE | ID: mdl-35909899

ABSTRACT

The immune microenvironment is a culmination of the collaborative effort of immune cells and is important in cancer development. The underlying mechanisms of the tumor immune microenvironment in regulating prostate cancer (PRAD) are unclear. In the current study, 144 natural killer cell-related genes were identified using differential expression, single-sample gene set enrichment analysis, and weighted gene coexpression network analysis. Furthermore, VCL, ACTA2, MYL9, MYLK, MYH11, TPM1, ACTG2, TAGLN, and FLNC were selected as hub genes via the protein-protein interaction network. Based on the expression patterns of the hub genes, endothelial, epithelial, and tissue stem cells were identified as key cell subpopulations, which could regulate PRAD via immune response, extracellular signaling, and protein formation. Moreover, 27 genes were identified as prognostic signatures and used to construct the risk score model. Receiver operating characteristic curves revealed the good performance of the risk score model in both the training and testing datasets. Different chemotherapeutic responses were observed between the low- and high-risk groups. Additionally, a nomogram based on the risk score and other clinical features was established to predict the 1-, 3-, and 5-year progression-free interval of patients with PRAD. This study provides novel insights into the molecular mechanisms of the immune microenvironment and its role in the pathogenesis of PARD. The identification of key cell subpopulations has a potential therapeutic and prognostic use in PRAD.

11.
Ecotoxicol Environ Saf ; 242: 113895, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35872490

ABSTRACT

Red swamp crayfish (Procambarus clarkii) has increasingly become a high-value freshwater product in China. During the intensive cultivation, excessive ammonia exposure is an important lethal factor of crayfish. We investigated the toxic effects and mechanisms of ammonia on crayfish at two different developmental stages. A preliminary ammonia stress test showed a 96-h LC50 of 135.10 mg/L and 299.61 mg/L for Stage_1 crayfish (8.47 ± 1.68 g) and Stage_2 crayfish (18.33 ± 2.41 g), respectively. During a prolonged ammonia exposure (up to 96 h), serum acid phosphatase and alkaline phosphatase showed a time-dependent decrease. Histological assessment indicated the degree of hepatopancreatic injury, which was mainly characterized as tubule lumen dilatation, degenerated tubule, vacuolization and dissolved hepatic epithelial cell, increased with exposure time. Enhanced malondialdehyde level and reduced antioxidant capacity of hepatopancreas were also observed. The mRNA expression and activity of catalase and superoxide dismutase showed an initial up-regulation within 24 h, and then gradually down-regulated with the exposure time. In the post-treatment recovery period, the Stage_2 crayfish exerted a stronger antioxidant and detoxification capacity than that of the Stage_1 crayfish, and thus quickly recovered from the ammonia exposure. Our findings provide a further understanding of the adverse effects of ammonia stress and suggest guidelines for water quality management during crayfish farming.


Subject(s)
Antioxidants , Astacoidea , Ammonia/metabolism , Ammonia/toxicity , Animals , Antioxidants/metabolism , Astacoidea/physiology , Hepatopancreas/metabolism , Oxidative Stress
12.
Fish Shellfish Immunol ; 122: 419-425, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35182722

ABSTRACT

The widespread occurrence and accumulation of plastic waste have been globally recognized as a critical issue. However, few researches have evaluated the adverse effects of nanoplastics to freshwater organisms. Thus, here, the effects of polystyrene nanoplastics (PS-NP) on the physiological changes (i.e., molting) and enzyme activity of oxidative stress were investigated in the adult freshwater prawn Macrobrachium nipponense. Based on a previous study and environmental microplastic concentrations, the prawn was exposed to 0, 0.04, 0.4, 4, and 40 mg/L waterborne PS-NP for 21 days. The results showed that growth and survival-related parameters were not affected by all PS-NP groups, while the molting rate were significantly decreased in the 4 and 40 mg/L PS-NP group. Meanwhile, the expression of molting-related gene (calcium-calmodulin-dependent protein kinase I, ecdysteroid receptor, and leucine-rich repeat-containing G-protein-coupled receptor 2) were significantly decreased. H2O2 content was significantly increased in all PS-NP groups relative to the control. Lower concentrations of PS-NP increased the activity of superoxide dismutase (SOD), glutathione S-transferase (GST), and glutathione peroxidase (GSH-Px), whereas increased concentrations, decreased SOD, GST, and GSH-Px activity. These results suggest that chronic exposure to PS-NP at an environmental concentration impaired molting and induced oxidative stress in the adult river prawn Macrobrachium nipponense. The findings provided basic information for assessing the risk assessment of nanoplastics and revealing the molecular mechanisms of nanoplastics toxicity.


Subject(s)
Palaemonidae , Water Pollutants, Chemical , Animals , Hydrogen Peroxide/pharmacology , Microplastics/toxicity , Molting/genetics , Oxidative Stress , Palaemonidae/genetics , Plastics , Polystyrenes/toxicity , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
13.
Ecotoxicol Environ Saf ; 229: 113054, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34894426

ABSTRACT

Microcystin-LR (MC-LR), mainly released by Microcystis aeruginosa, is posing a tremendous risk to aquatic animals and human health. Meanwhile, biochar (BC) is gradually be used as a sustainable adsorbent to immobilize and remove water pollutants. In our study, we for the first time conducted a full-scale investigation on lipid metabolism and its regulation mechanism of female zebrafish (Danio rerio) exposed to 0, 10 µg/L MC-LR, 100 µg/L BC, and 10 µg/L MC-LR+ 100 µg/L BC. The results indicated that sub-chronic MC-LR exposure induced hepatic lipidosis and apoptosis, including the formation of lipid droplets, significantly elevation of hepatic triglyceride (TG) level as well as significant upregulated expression of lipogenesis-related genes (foxo1a, elovl5, pparγ) and pro-apoptotic genes (bax, casp3). Nevertheless, no significant alteration was observed in the single BC group and the combined exposure group, which indicated that BC may solely functioned as an absorbent agent to lower MC-LR bioaccumulation in zebrafish liver and alleviate MC-LR-induced hepatotoxicity. Our findings revealed that the utilization of rice straw-derived BC can adsorb and immobile MC-LR in the water, subsequently alleviated the MC-LR-induced hepatic lipidosis and apoptosis in female zebrafish. On the basis of fish health, it is urgent to explore the feasibility of using environmentally friendly materials like BC to adsorb pollutants in water.


Subject(s)
Lipidoses , Oryza , Water Pollutants, Chemical , Acetyltransferases , Animals , Apoptosis , Charcoal , Female , Marine Toxins , Microcystins/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish , Zebrafish Proteins
14.
Toxins (Basel) ; 13(11)2021 10 29.
Article in English | MEDLINE | ID: mdl-34822549

ABSTRACT

Cyanobacteria (blue-green algae) have been present on Earth for over 2 billion years, and can produce a variety of bioactive molecules, such as cyanotoxins. Microcystins (MCs), the most frequently detected cyanotoxins, pose a threat to the aquatic environment and to human health. The classic toxic mechanism of MCs is the inhibition of the protein phosphatases 1 and 2A (PP1 and PP2A). Immunity is known as one of the most important physiological functions in the neuroendocrine-immune network to prevent infections and maintain internal homoeostasis in fish. The present review aimed to summarize existing papers, elaborate on the MC-induced immunotoxicity in fish, and put forward some suggestions for future research. The immunomodulatory effects of MCs in fish depend on the exposure concentrations, doses, time, and routes of exposure. Previous field and laboratory studies provided strong evidence of the associations between MC-induced immunotoxicity and fish death. In our review, we summarized that the immunotoxicity of MCs is primarily characterized by the inhibition of PP1 and PP2A, oxidative stress, immune cell damage, and inflammation, as well as apoptosis. The advances in fish immunoreaction upon encountering MCs will benefit the monitoring and prediction of fish health, helping to achieve an ecotoxicological goal and to ensure the sustainability of species. Future studies concerning MC-induced immunotoxicity should focus on adaptive immunity, the hormesis phenomenon and the synergistic effects of aquatic microbial pathogens.


Subject(s)
Apoptosis/drug effects , Fishes , Immunotoxins/toxicity , Inflammation/immunology , Microcystins/toxicity , Oxidative Stress/drug effects , Animals , Fish Diseases/chemically induced , Fish Diseases/immunology , Fishes/immunology , Fishes/metabolism , Inflammation/chemically induced , Protein Phosphatase 1/immunology , Protein Phosphatase 2/immunology
15.
Mitochondrial DNA B Resour ; 6(3): 920-921, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33796682

ABSTRACT

Sarotherodon galilaeus (Linnaeus, 1758), a cichlid species that is naturally distributed in African and Eurasian waters, was introduced in many Asian countries for aquaculture. To date, rare genetic studies focused on this species have hindered our understanding of this species. Here, we reported the complete mitochondrial genome of S. galilaeus that was sequenced using next-generation sequencing technology. The resulting mitogenome of S. galilaeus was 16,630 in length and comprised 13 protein-coding genes (PCG), 22 transfer RNA (tRNA) genes, 2 ribosomal RNA genes (rRNA), and one control region (D-loop). Phylogenetic analysis indicated that Oreochromini species contained two lineages (I and II) and S. galilaeus clustered with Oreochromis aureus rather than other Sarotherodon species.

16.
Mitochondrial DNA B Resour ; 5(3): 3703-3705, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33367067

ABSTRACT

Paranemachilus genilepis (Zhu 1983) is a small and benthic loach species that mainly distributes in the Guangxi Province, China. To date, little was known about the genetic information of this species as no molecular sequence has been published. In this study, the complete mitochondrial genome of P. genilepis was reported using the Illumina MiSeq platform. The genome was 16,563 base pairs (bp) in length and its structure was identical to most genomes of bony fishes. Phylogenetic analyses supported two clades (I and II) among Nemacheilidae species and P. genilepis was sister to Oreonectes furcocaudalis.

17.
Appl Microbiol Biotechnol ; 103(4): 1789-1799, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30613898

ABSTRACT

The Gal4/UAS system provides a powerful tool to analyze the function of genes. The system has been employed extensively in zebrafish; however, cytotoxicity of Gal4 and methylation of UAS can hinder future applications of Gal4/UAS in zebrafish. In this study, we provide quantitative data on the cytotoxicity of Gal4-FF and KalTA4 in zebrafish embryos. A better balance between induction efficiency and toxicity was shown when the injection dosage was 20 pg for Gal4-FF and 30 pg for KalTA4. We tested the DNA methylation of UAS in different copies (3×, 5×, 7×, 9×, 11×, and 14×), and the results showed, for the first time, that the degree of UAS methylation increases with the increase in the copy number of UAS. We detected insertions of the Tol2-mediated transgene in the Gal4 line and found as many as three sites of insertion, on average; only about 20% of individuals contained single-site insertion in F1 generation. We suggested that the screening of Gal4 lines with single-site insertion is essential when Tol2-mediated Gal4 transgenic lines are created. Moreover, we designed a novel 5 × non-repetitive UAS (5 × nrUAS) to reduce the appeal of multicopy UAS as a target for methylation. Excitingly, the 5 × nrUAS is less prone to methylation compared to 5 × UAS. We hope the results will facilitate the future application of the Gal4/UAS system in zebrafish research.


Subject(s)
Animals, Genetically Modified/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Molecular Biology/methods , Regulatory Sequences, Nucleic Acid , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Zebrafish/genetics , Animals , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Staining and Labeling/methods
18.
Fish Shellfish Immunol ; 78: 383-391, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29674123

ABSTRACT

Cyanobacterial blooms caused by water eutrophication have become a worldwide problem. During the degradation of toxic cyanobacterial blooms, elevated ammonia and microcystins concentrations co-occur and exert toxicity on fish. Up to now, the combined effect of microcystins and ammonia on fish immunotoxicity has not been reported. The present study investigated immune responses of blunt snout bream (Megalabrama amblycephala) to dietary toxic cyanobacteria and ammonia exposure. Megalobrama amblycephala were exposed to solutions with different concentrations of NH3-N (0, 0.06, 0.12 mg/L) and fed with diets containing 15% and 30% of toxic cyanobacteria lyophilized powder for 30 d. The microcystins concentration in different organs of Megalobrama amblycephala was in the following sequence: head kidney > liver > intestine > gonad > spleen > gill > trunk kidney > brain > muscle > heart. In both head kidney and spleen, the MC-LR and MC-RR concentration increased significantly with increasing NH3-N concentration. It indicates that NH3-N maybe promote the accumulation of microcystins in immune organs of Megalobrama amblycephala. Meanwhile, broadened peripheral interspace of lymphocytes, nucleus shrivel and edematous mitochondria were observed in head kidney lymphocyte of toxic treatment fish. Moreover, there were significant interactions between dietary toxic cyanobacteria and ammonia exposure on head kidney macrophage phagocytosis activity, respiratory burst activities, total number of white blood cells and the transcriptional levels of sIgM, mIgD and sIgZ genes. Our data clearly demonstrated that dietary toxic cyanobacteria combined with ammonia exposure showed a synergistic effect on Megalobrama amblycephala immunotoxicity.


Subject(s)
Ammonia/adverse effects , Cyprinidae/immunology , Immunity, Innate , Microcystins/adverse effects , Ammonia/administration & dosage , Animals , Dose-Response Relationship, Drug , Microcystins/administration & dosage , Microcystis/chemistry , Random Allocation , Tissue Distribution
19.
Cent Eur J Immunol ; 42(3): 239-243, 2017.
Article in English | MEDLINE | ID: mdl-29204087

ABSTRACT

Aeromonas hydrophila is the main reason of epidemic septicaemia for freshwater fish. In the present study, the effect of Aeromonas hydrophila infection on the non-specific immunity of blunt snout bream (Megalobrama amblycephala) was studied. After Aeromonas hydrophila challenge, lysozyme activity was significantly increased at 4 h, 1 d, 3 d, 5 d, 14 d and 21 d. An increased level of lysozyme activity indicated a natural protective mechanism in fish. The significant increases of superoxide dismutase activity and catalase activity in treatment group were detected at 4 h, 1 d, 3 d, 5 d, 14 d and 21 d after Aeromonas hydrophila challenge. Increase in the superoxide anion and H2O2 is considered to be beneficial for self-protection from disease. Acid phosphatase activity increased significantly at 1 d, 3 d and 5 d after Aeromonas hydrophila challenge. Alkaline phosphatase activity in treatment group showed significant increase at 4 h, 1 d, 3 d, 5 d, 14 d and 21 d compared to control group. Increased phosphatase activity indicates higher breakdown of the energy reserve, which is utilized for the growth and survival of fish. These results revealed that the non-specific immunity of fish played an important role in self-protection after pathogens infection.

20.
Dev Comp Immunol ; 59: 63-76, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26802439

ABSTRACT

Toll-like receptors (TLRs) play a pivotal role in teleost innate immune system. In this study, Megalobrama amblycephala (ma) tlr4 gene was cloned, its putative polypeptide product characterized, and expression analysed. Matlr4 cDNA is 2862 bp long, with an open reading frame of 2364 bp encoding 787 amino acids. MaTlr4 is a typical TLR protein, including the extracellular part with nine leucine-rich repeat motifs, a transmembrane region and a cytoplasmic Toll/interleukin-1 receptor domain. MaTlr4 has the highest level of identity (94%) and similarity (97%) with the grass carp Tlr4.2 homolog. This was also corroborated by the phylogenetic analysis, which placed MaTlr4 in a cluster with other cyprinid homologs. Matlr4 mRNA was ubiquitously expressed in all examined tissues and during all sampled developmental stages. The observed peak in matlr4 mRNA expression during gastrula and somite stages is in good agreement with its proposed role in the development of the neural system. Temporal expression patterns of matlr4 and maMyD88 mRNAs and proteins were analyzed in liver, spleen, head kidney, trunk kidney and intestine after Aeromonas hydrophila infection. And mRNA expression varied between different time-points. Both MaTlr4 and MaMyD88 protein expressions at 12 hpi were significantly enhanced in head kidney and intestine. These results indicate that matlr4 is involved in the immune response in M. amblycephala, and that it is indeed a functional homologue of tlr4s described in other animal species.


Subject(s)
Aeromonas hydrophila/immunology , Cyprinidae/immunology , Fish Diseases/immunology , Fish Proteins/immunology , Gram-Negative Bacterial Infections/immunology , Immunity, Innate/immunology , Toll-Like Receptor 4/immunology , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Cyprinidae/genetics , Cyprinidae/microbiology , Female , Fish Diseases/microbiology , Fish Proteins/genetics , Fish Proteins/metabolism , Gram-Negative Bacterial Infections/microbiology , Head Kidney/immunology , Intestines/immunology , Male , Myeloid Differentiation Factor 88/metabolism , Phylogeny , RNA, Messenger/biosynthesis , Sequence Alignment , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...