Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Methods ; 13(35): 3994-4000, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34528942

ABSTRACT

Tryptophan (Trp) is one of the essential amino acids, which plays important roles in biological systems and the normal growth of human beings, and it is of great significance to be able to detect Trp in a rapid, efficient, and sensitive way. Herein, a 3D network metal-organic framework ([Sm2(BTEC)1.5(H2O)8]·6H2O) with excellent thermal and water stability was synthesized by a hydrothermal method. Interestingly, it could discriminate Trp from other natural amino acids in aqueous solution through a significant fluorescence enhancement effect, and showed high detection sensitivity (LOD = 330 nM) and outstanding anti-interference ability. The sensor system was successfully applied to the detection of Trp in practical samples, so it was expected to be a sensitive and efficient Trp sensor. In addition, the sensing mechanism was explained in detail by a series of characterization methods combined with density functional theory (DFT). There were many coordination water molecules in the crystal structure of the complex. Based on the small steric hindrance and molecular structure of water molecules, it provided the possibility for coordination interaction between Trp and Sm3+. On the other hand, the triplet energy level (T1) of Trp matched with the 4G5/2 vibrational energy level of Sm3+, so Trp could be used as the second "antenna molecule" besides 1,2,4,5-benzenetetracarboxylic acid (H4BTEC). Therefore, it effectively broadened the way for Sm-MOF to absorb excitation light.


Subject(s)
Metal-Organic Frameworks , Tryptophan , Fluorescence , Humans , Samarium , Water
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120065, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34198120

ABSTRACT

Uric acid (UA), as the final product of purine metabolism, exists in urine and serum, which plays an important role in human metabolism, immunity and other functions. The sensitive, efficient, and rapid detection of UA has far-reaching significance in clinical diagnosis and disease prevention. Herein, a novel coordination polymer constructed by dual-ligand was successfully prepared, which exhibited excellent thermal and water stability. The polymer was interlaced by coordination bonds and hydrogen bonds to form an infinitely extended three-dimensional framework, which showed a rare and novel topological structure. The complex selectively recognized UA through significant fluorescence quenching response in the presence of various interferences. The excellent detection sensitivity (the limited detection of 1.2 µM), outstanding anti-interference ability and remarkable recyclability marked the complex to be a promising sensor material towards UA. In addition, the detection mechanism of UA by the complex was investigated in detail by combining density functional theory (DFT) and a variety of other analytical methods.


Subject(s)
Polymers , Uric Acid , Fluorescence , Humans , Ligands
3.
Dalton Trans ; 50(4): 1300-1306, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33393945

ABSTRACT

Bacillus anthracis is an extremely dangerous bacterium that is associated with high morbidity and mortality. 2,6-Pyridine dicarboxylic acid (DPA) is a major biomarker of Bacillus anthracis, and it is of great significance to be able to detect DPA in a rapid, efficient, and sensitive way. Herein, a 3D network metal-organic framework (Tb-MOF) with excellent thermal and water stability was synthesized. Tb-MOF could be used to selectively detect DPA via green fluorescence recovery with a fluorescence intensity enhancement factor of 103. In addition, due to the high detection sensitivity (a detection limit of 2.4 µM) and excellent anti-interference abilities, Tb-MOF was less affected by environmental factors when compared with a "turn-off"-response luminescence sensor; it can be employed as a promising "turn-on" luminescence sensor for DPA in the future. Finally, quantum calculations showed that a large energy difference appeared between the 5D4 level of Tb3+ and the first excited triplet energy level of H2-DHBDC2-, which was the reason that the complex did not show characteristic Tb3+ emission.


Subject(s)
Anthrax/diagnosis , Luminescent Measurements , Metal-Organic Frameworks/chemistry , Picolinic Acids/analysis , Terbium/chemistry , Bacillus anthracis/isolation & purification , Biomarkers/analysis , Metal-Organic Frameworks/chemical synthesis , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...