Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(17)2022 Sep 04.
Article in English | MEDLINE | ID: mdl-36079696

ABSTRACT

In heterogeneous landscapes with temporary water deficit characteristics in southwestern China, understanding the electrophysiological and morphological characteristics of Bletilla striata under different water conditions can help to better evaluate its suitability for planting plants in specific locations and guide planting and production. Using B. striata seedlings as experimental materials, the maximum field capacity (FC) was 75-80% (CK: control group), 50-60% FC (LS: light drought stress), 40-45% FC (MS: moderate drought stress), and 30-35% FC (SS: severe drought stress). In terms of physiological response, the activities of peroxidase (POD) and catalase (CAT) decreased under drought conditions, but the activity was well under the LS treatment, and the contents of proline (Pro) and malondialdehyde (MDA) increased. In terms of morphological responses, under drought conditions, root lengths of the rhizomes (except the LS treatment) were significantly reduced, the leaf lengths were reduced, and the biomass was significantly reduced. The stomatal size reached the maximum under the LS treatment, and the stomatal density gradually decreased with the increase in drought degree. In terms of electrophysiological responses, drought significantly decreased the net photosynthetic rate (PN) of B. striata, stomatal conductance (gs), and transpiration rate (Tr), but effectively increased the water use efficiency (WUE). The effective thickness of leaves of B. striata increased under drought conditions, and drought promoted the formation of leaf morphological diversity. Our results showed that drought stress changed the physiological and morphological characteristics of B. striata, and under light drought conditions had higher physiological activity, good morphological characteristics, higher cellular metabolic energy and ecological adaptability. Appropriate drought can promote the improvement of the quality of B. striata, and it can be widely planted in mildly arid areas.

2.
Article in English | MEDLINE | ID: mdl-31151232

ABSTRACT

Background: The secondary forests have become the major forest type worldwide, and forest gap was also a common small disturbance in secondary forests. We aimed to analyze the effects of small gap disturbance on the plant species richness of subtropical secondary forest with natural regeneration barriers and examine the relationship between soil topography and plant species in a subtropical Rhododendron secondary forest of the Baili Rhododendron National Nature Reserve. Methods: The major plant species and soil topography gradient factors of the small gaps and closed canopy (control group) were analyzed using two-way ANOVA, multivariate permutational analysis of variance, nonmetric multi-dimensional scaling, random forest, canonical correspondence analysis, redundancy analysis, and a generalized linear model. Results: Small gaps had significant impact on the distribution of soil available potassium (AK), organic carbon to total phosphorus (C/P) ratio rather than slope position for soil pH and calcium (Ca) under closed canopy. Soil pH and AK followed by total phosphorus (TP) were the most important variables explaining the spatial distributions of soil properties in both habitats. Determining the spatial distribution of individual woody plant species were soil pH in small gaps, instead of lower altitude, TP, total potassium (TK) and sodium (Na) concentrations for both habitats. Moreover, Ericaceae and Fagaceae were strongly associated with pH in the small gaps. However, there was soil Na for the herbaceous plant in the closed canopy. The species richness of woody plant species in small gaps was affected significantly by pH, soil water content (SWC), and TK, instead of soil organic carbon (SOC), SWC and C/P ratio in both habitats. Conclusions: Small gaps were not always significantly improved the composition of soil nutrients, but provided a good microenvironment for plant growth, species richness of major woody plant differed between habitats.


Subject(s)
Biodiversity , Forests , Plants/classification , Soil/chemistry , Altitude , Calcium/analysis , Carbon/analysis , China , Hydrogen-Ion Concentration , Phosphorus/analysis , Potassium/analysis , Sodium/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...