Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Arch Orthop Trauma Surg ; 135(9): 1201-10, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26141534

ABSTRACT

INTRODUCTION: Spinal cord injury may be related to excessive distraction of the spinal cord during surgical correction of spinal deformities by vertebral column resection. This study aimed to investigate how vertebral column distraction influences spinal cord volume to establish the safe range in a goat model. MATERIALS AND METHODS: A vertebral column resection was performed on the tenth thoracic vertebra of 11 goats. The spinal cord was distracted until the somatosensory evoked potential signals were decreased to 50 % from baseline amplitude or were delayed by 10 % of the baseline peak latency. The osteotomy segment was stabilized with a PEEK mesh cage filled with bone graft, and the pedicle screws on the rods were then tightened in this position. Spinal cord volume was calculated using Mimics software, and T10 height, disk height, osteotomy segment height, and spinal segment height were measured using the MRI image workstation. RESULTS: Three goats were excluded, and data obtained from the eight remaining goats were analyzed. The safe limit of distraction distance was 11.8 ± 3.65 mm, and the distraction distance was strongly correlated with the difference between the pre- and postoperative measurements (d value) of spinal cord volume per 1 mm of osteotomy segment height (r = -0.952, p < 0.001), but was not correlated with T10 body height (r = 0.16, p = 0.71), spinal segment height (r = 0.29, p = 0.49), disk height (r = -0.12, p = 0.98), or the d value (pre-post) of spinal cord volume per 1 mm of spinal segment height (r = 0.45, p = 0.26). The mean d value (pre-post) of spinal cord volume per 1 mm of osteotomy segment height was 10.05 ± 0.02 mm(3) (range 10.02-10.08 mm(3)). CONCLUSION: The maximum change in spinal cord volume per 1-mm change in height was in the osteotomy segment, and its safe limit was 10.05 ± 0.02 mm(3). The safe limit of spinal cord distraction can be calculated using the spinal cord volume per unit 1-mm change in height.


Subject(s)
Thoracic Vertebrae/pathology , Thoracic Vertebrae/surgery , Animals , Evoked Potentials, Somatosensory , Goats , Intraoperative Complications/etiology , Intraoperative Complications/prevention & control , Magnetic Resonance Imaging , Models, Animal , Osteotomy , Postoperative Complications/etiology , Postoperative Complications/prevention & control , Spinal Curvatures/surgery
2.
PLoS One ; 10(5): e0127624, 2015.
Article in English | MEDLINE | ID: mdl-26001196

ABSTRACT

Vertebral column resection is associated with a risk of spinal cord injury. In the present study, using a goat model, we aimed to investigate the relationship between changes in spinal cord volume and spinal cord injury due to spinal shortening, and to quantify the spinal cord volume per 1-mm height in order to clarify a safe limit for shortening. Vertebral column resection was performed at T10 in 10 goats. The spinal cord was shortened until the somatosensory-evoked potential was decreased by 50% from the baseline amplitude or delayed by 10% relative to the baseline peak latency. A wake-up test was performed, and the goats were observed for two days postoperatively. Magnetic resonance imaging was used to measure the spinal cord volume, T10 height, disc height, osteotomy segment height, and spinal segment height pre- and postoperatively. Two of the 10 goats were excluded, and hence, only data from eight goats were analyzed. The somatosensory-evoked potential of these eight goats demonstrated meaningful changes. With regard to neurologic function, five and three goats were classified as Tarlov grades 5 and 4 at two days postoperatively. The mean shortening distance was 23.6 ± 1.51 mm, which correlated with the d-value (post-pre) of the spinal cord volume per 1-mm height of the osteotomy segment (r = 0.95, p < 0.001) and with the height of the T10 body (r = 0.79, p = 0.02). The mean d-value (post-pre) of the spinal cord volume per 1-mm height of the osteotomy segment was 142.87 ± 0.59 mm3 (range, 142.19-143.67 mm3). The limit for shortening was approximately 106% of the vertebral height. The mean volumes of the osteotomy and spinal segments did not significantly change after surgery (t = 0.310, p = 0.765 and t = 1.241, p = 0.255, respectively). Thus, our results indicate that the safe limit for shortening can be calculated using the change in spinal cord volume per 1-mm height.


Subject(s)
Evoked Potentials, Somatosensory/physiology , Spinal Cord Injuries/pathology , Spinal Cord/pathology , Animals , Disease Models, Animal , Goats , Laminectomy , Magnetic Resonance Imaging , Organ Size , Spinal Cord/physiopathology , Spinal Cord/surgery , Spinal Cord Injuries/physiopathology , Thoracic Vertebrae
SELECTION OF CITATIONS
SEARCH DETAIL
...