Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Genome Biol ; 25(1): 145, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831386

ABSTRACT

BACKGROUND: Single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) have led to groundbreaking advancements in life sciences. To develop bioinformatics tools for scRNA-seq and SRT data and perform unbiased benchmarks, data simulation has been widely adopted by providing explicit ground truth and generating customized datasets. However, the performance of simulation methods under multiple scenarios has not been comprehensively assessed, making it challenging to choose suitable methods without practical guidelines. RESULTS: We systematically evaluated 49 simulation methods developed for scRNA-seq and/or SRT data in terms of accuracy, functionality, scalability, and usability using 152 reference datasets derived from 24 platforms. SRTsim, scDesign3, ZINB-WaVE, and scDesign2 have the best accuracy performance across various platforms. Unexpectedly, some methods tailored to scRNA-seq data have potential compatibility for simulating SRT data. Lun, SPARSim, and scDesign3-tree outperform other methods under corresponding simulation scenarios. Phenopath, Lun, Simple, and MFA yield high scalability scores but they cannot generate realistic simulated data. Users should consider the trade-offs between method accuracy and scalability (or functionality) when making decisions. Additionally, execution errors are mainly caused by failed parameter estimations and appearance of missing or infinite values in calculations. We provide practical guidelines for method selection, a standard pipeline Simpipe ( https://github.com/duohongrui/simpipe ; https://doi.org/10.5281/zenodo.11178409 ), and an online tool Simsite ( https://www.ciblab.net/software/simshiny/ ) for data simulation. CONCLUSIONS: No method performs best on all criteria, thus a good-yet-not-the-best method is recommended if it solves problems effectively and reasonably. Our comprehensive work provides crucial insights for developers on modeling gene expression data and fosters the simulation process for users.


Subject(s)
Gene Expression Profiling , Single-Cell Analysis , Single-Cell Analysis/methods , Gene Expression Profiling/methods , Humans , Software , Computer Simulation , Transcriptome , Computational Biology/methods , Sequence Analysis, RNA/methods , RNA-Seq/methods , RNA-Seq/standards
2.
Biochem Genet ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877158

ABSTRACT

Endophytic fungi associated with plants may contain undiscovered bioactive compounds. Under standard laboratory conditions, most undiscovered compounds are inactive, whereas their production could be stimulated under different cultivation conditions. In this study, six endophytic fungi were isolated from the bark of Koelreuteria paniculata in Quancheng Park, Jinan City, Shandong Province, one of which was identified as a new subspecies of Aureobasidium pullulans, named A. pullulans KB3. Additionally, metabolomic tools were used to screen suitable media for A. pullulans KB3 fermentation, and the results showed that peptone dextrose medium (PDM) was more beneficial to culture A. pullulans KB3 for isolation of novel compounds. Sphaerolone, a polyketone compound, was initially isolated from A. pullulans KB3 via scaled up fermentation utilizing PDM. Additionally, the whole-genome DNA of A. pullulans KB3 was sequenced to facilitate compound isolation and identify the biosynthesis gene clusters (BGCs). This study reports the multi-omics (metabolome and genome) analysis of A. pullulans KB3, laying the foundation for discovering novel compounds of silent BGCs and identifying their biosynthesis pathway.

3.
J Hepatol ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508240

ABSTRACT

BACKGROUND & AIMS: Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer and is highly lethal. Clonorchis sinensis (C. sinensis) infection is an important risk factor for iCCA. Here we investigated the clinical impact and underlying molecular characteristics of C. sinensis infection-related iCCA. METHODS: We performed single-cell RNA sequencing, whole-exome sequencing, RNA sequencing, metabolomics and spatial transcriptomics in 251 patients with iCCA from three medical centers. Alterations in metabolism and the immune microenvironment of C. sinensis-related iCCAs were validated through an in vitro co-culture system and in a mouse model of iCCA. RESULTS: We revealed that C. sinensis infection was significantly associated with iCCA patients' overall survival and response to immunotherapy. Fatty acid biosynthesis and the expression of fatty acid synthase (FASN), a key enzyme catalyzing long-chain fatty acid synthesis, were significantly enriched in C. sinensis-related iCCAs. iCCA cell lines treated with excretory/secretory products of C. sinensis displayed elevated FASN and free fatty acids. The metabolic alteration of tumor cells was closely correlated with the enrichment of tumor-associated macrophage (TAM)-like macrophages and the impaired function of T cells, which led to formation of an immunosuppressive microenvironment and tumor progression. Spatial transcriptomics analysis revealed that malignant cells were in closer juxtaposition with TAM-like macrophages in C. sinensis-related iCCAs than non-C. sinensis-related iCCAs. Importantly, treatment with a FASN inhibitor significantly reversed the immunosuppressive microenvironment and enhanced anti-PD-1 efficacy in iCCA mouse models treated with excretory/secretory products from C. sinensis. CONCLUSIONS: We provide novel insights into metabolic alterations and the immune microenvironment in C. sinensis infection-related iCCAs. We also demonstrate that the combination of a FASN inhibitor with immunotherapy could be a promising strategy for the treatment of C. sinensis-related iCCAs. IMPACT AND IMPLICATIONS: Clonorchis sinensis (C. sinensis)-infected patients with intrahepatic cholangiocarcinoma (iCCA) have a worse prognosis and response to immunotherapy than non-C. sinensis-infected patients with iCCA. The underlying molecular characteristics of C. sinensis infection-related iCCAs remain unclear. Herein, we demonstrate that upregulation of FASN (fatty acid synthase) and free fatty acids in C. sinensis-related iCCAs leads to formation of an immunosuppressive microenvironment and tumor progression. Thus, administration of FASN inhibitors could significantly reverse the immunosuppressive microenvironment and further enhance the efficacy of anti-PD-1 against C. sinensis-related iCCAs.

4.
Anal Chem ; 96(12): 4745-4755, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38417094

ABSTRACT

Despite the well-established connection between systematic metabolic abnormalities and the pathophysiology of pituitary adenoma (PA), current metabolomic studies have reported an extremely limited number of metabolites associated with PA. Moreover, there was very little consistency in the identified metabolite signatures, resulting in a lack of robust metabolic biomarkers for the diagnosis and treatment of PA. Herein, we performed a global untargeted plasma metabolomic profiling on PA and identified a highly robust metabolomic signature based on a strategy. Specifically, this strategy is unique in (1) integrating repeated random sampling and a consensus evaluation-based feature selection algorithm and (2) evaluating the consistency of metabolomic signatures among different sample groups. This strategy demonstrated superior robustness and stronger discriminative ability compared with that of other feature selection methods including Student's t-test, partial least-squares-discriminant analysis, support vector machine recursive feature elimination, and random forest recursive feature elimination. More importantly, a highly robust metabolomic signature comprising 45 PA-specific differential metabolites was identified. Moreover, metabolite set enrichment analysis of these potential metabolic biomarkers revealed altered lipid metabolism in PA. In conclusion, our findings contribute to a better understanding of the metabolic changes in PA and may have implications for the development of diagnostic and therapeutic approaches targeting lipid metabolism in PA. We believe that the proposed strategy serves as a valuable tool for screening robust, discriminating metabolic features in the field of metabolomics.


Subject(s)
Lipid Metabolism , Pituitary Neoplasms , Humans , Pituitary Neoplasms/diagnosis , Metabolomics/methods , Discriminant Analysis , Biomarkers
5.
Cancer Res ; 84(8): 1352-1371, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38335276

ABSTRACT

Liver metastasis is the leading cause of mortality in patients with colorectal cancer. Given the significance of both epithelial-mesenchymal transition (EMT) of tumor cells and the immune microenvironment in colorectal cancer liver metastasis (CRLM), the interplay between them could hold the key for developing improved treatment options. We employed multiomics analysis of 130 samples from 18 patients with synchronous CRLM integrated with external datasets to comprehensively evaluate the interaction between immune cells and EMT of tumor cells in liver metastasis. Single-cell RNA sequencing analysis revealed distinct distributions of nonmalignant cells between primary tumors from patients with metastatic colorectal cancer (mCRC) and non-metastatic colorectal cancer, showing that Th17 cells were predominantly enriched in the primary lesion of mCRC. TWEAK, a cytokine secreted by Th17 cells, promoted EMT by binding to receptor Fn14 on tumor cells, and the TWEAK-Fn14 interaction enhanced tumor migration and invasion. In mouse models, targeting Fn14 using CRISPR-induced knockout or lipid nanoparticle-encapsulated siRNA alleviated metastasis and prolonged survival. Mice lacking Il17a or Tnfsf12 (encoding TWEAK) exhibited fewer metastases compared with wild-type mice, while cotransfer of Th17 with tumor cells promoted liver metastasis. Higher TWEAK expression was associated with a worse prognosis in patients with colorectal cancer. In addition, CD163L1+ macrophages interacted with Th17 cells, recruiting Th17 via the CCL4-CCR5 axis. Collectively, this study unveils the role of immune cells in the EMT process and identifies TWEAK secreted by Th17 as a driver of CRLM. SIGNIFICANCE: TWEAK secreted by Th17 cells promotes EMT by binding to Fn14 on colorectal cancer cells, suggesting that blocking the TWEAK-Fn14 interaction may be a promising therapeutic approach to inhibit liver metastasis.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Humans , Animals , Mice , Th17 Cells , Cytokine TWEAK , Epithelial-Mesenchymal Transition/genetics , Prognosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/secondary , TWEAK Receptor/genetics , Cell Line, Tumor , Cell Movement/genetics , Tumor Microenvironment
6.
Anal Chem ; 96(4): 1410-1418, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38221713

ABSTRACT

Multiclass metabolomics has become a popular technique for revealing the mechanisms underlying certain physiological processes, different tumor types, or different therapeutic responses. In multiclass metabolomics, it is highly important to uncover the underlying biological information on biosamples by identifying the metabolic markers with the most associations and classifying the different sample classes. The classification problem of multiclass metabolomics is more difficult than that of the binary problem. To date, various methods exist for constructing classification models and identifying metabolic markers consisting of well-established techniques and newly emerging machine learning algorithms. However, how to construct a superior classification model using these methods remains unclear for a given multiclass metabolomic data set. Herein, MultiClassMetabo has been developed for constructing a superior classification model using metabolic markers identified in multiclass metabolomics. MultiClassMetabo can enable online services, including (a) identifying metabolic markers by marker identification methods, (b) constructing classification models by classification methods, and (c) performing a comprehensive assessment from multiple perspectives to construct a superior classification model for multiclass metabolomics. In summary, MultiClassMetabo is distinguished for its capability to construct a superior classification model using the most appropriate method through a comprehensive assessment, which makes it an important complement to other available tools in multiclass metabolomics. MultiClassMetabo can be accessed at http://idrblab.cn/multiclassmetabo/.


Subject(s)
Algorithms , Metabolomics , Metabolomics/methods , Machine Learning
7.
Nucleic Acids Res ; 52(D1): D859-D870, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37855686

ABSTRACT

Large-scale studies of single-cell sequencing and biological experiments have successfully revealed expression patterns that distinguish different cell types in tissues, emphasizing the importance of studying cellular heterogeneity and accurately annotating cell types. Analysis of gene expression profiles in these experiments provides two essential types of data for cell type annotation: annotated references and canonical markers. In this study, the first comprehensive database of single-cell transcriptomic annotation resource (CellSTAR) was thus developed. It is unique in (a) offering the comprehensive expertly annotated reference data for annotating hundreds of cell types for the first time and (b) enabling the collective consideration of reference data and marker genes by incorporating tens of thousands of markers. Given its unique features, CellSTAR is expected to attract broad research interests from the technological innovations in single-cell transcriptomics, the studies of cellular heterogeneity & dynamics, and so on. It is now publicly accessible without any login requirement at: https://idrblab.org/cellstar.


Subject(s)
Databases, Factual , Gene Expression Profiling , Single-Cell Analysis , Transcriptome
8.
J Chem Inf Model ; 63(24): 7628-7641, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38079572

ABSTRACT

Multiclass metabolomic studies have become popular for revealing the differences in multiple stages of complex diseases, various lifestyles, or the effects of specific treatments. In multiclass metabolomics, there are multiple data manipulation steps for analyzing raw data, which consist of data filtering, the imputation of missing values, data normalization, marker identification, sample separation, classification, and so on. In each step, several to dozens of machine learning methods can be chosen for the given data set, with potentially hundreds or thousands of method combinations in the whole data processing chain. Therefore, a clear understanding of these machine learning methods is helpful for selecting an appropriate method combination for obtaining stable and reliable analytical results of specific data. However, there has rarely been an overall introduction or evaluation of these methods based on multiclass metabolomic data. Herein, detailed descriptions of these machine learning methods in multiple data manipulation steps are reviewed. Moreover, an assessment of these methods was performed using a benchmark data set for multiclass metabolomics. First, 12 imputation methods for imputing missing values were evaluated based on the PSS (Procrustes statistical shape analysis) and NRMSE (normalized root-mean-square error) values. Second, 17 normalization methods for processing multiclass metabolomic data were evaluated by applying the PMAD (pooled median absolute deviation) value. Third, different methods of identifying markers of multiclass metabolomics were evaluated based on the CWrel (relative weighted consistency) value. Fourth, nine classification methods for constructing multiclass models were assessed using the AUC (area under the curve) value. Performance evaluations of machine learning methods are highly recommended to select the most appropriate method combination before performing the final analysis of the given data. Overall, detailed descriptions and evaluation of various machine learning methods are expected to improve analyses of multiclass metabolomic data.


Subject(s)
Machine Learning , Metabolomics , Metabolomics/methods , Support Vector Machine
9.
Anal Chem ; 95(13): 5542-5552, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36944135

ABSTRACT

Multiclass metabolomics has been widely applied in clinical practice to understand pathophysiological processes involved in disease progression and diagnostic biomarkers of various disorders. In contrast to the binary problem, the multiclass classification problem is more difficult in terms of obtaining reliable and stable results due to the increase in the complexity of determining exact class decision boundaries. In particular, methods of biomarker discovery and classification have a significant effect on the multiclass model because different methods with significantly varied theories produce conflicting results even for the same dataset. However, a systematic assessment for selecting the most appropriate methods of biomarker discovery and classification for multiclass metabolomics is still lacking. Therefore, a comprehensive assessment is essential to measure the suitability of methods in multiclass classification models from multiple perspectives. In this study, five biomarker discovery methods and nine classification methods were assessed based on four benchmark datasets of multiclass metabolomics. The performance assessment of the biomarker discovery and classification methods was performed using three evaluation criteria: assessment a (cluster analysis of sample grouping), assessment b (biomarker consistency in multiple subgroups), and assessment c (accuracy in the classification model). As a result, 13 combining strategies with superior performance were selected under multiple criteria based on these benchmark datasets. In conclusion, superior strategies that performed consistently well are suggested for the discovery of biomarkers and the construction of a classification model for multiclass metabolomics.


Subject(s)
Benchmarking , Metabolomics , Biomarkers
10.
Cancer Lett ; 559: 216122, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36898427

ABSTRACT

Lenvatinib is emerging as the first-line therapeutic option for advanced hepatocellular carcinoma (HCC), but drug resistance remains a major hurdle for its long-term therapy efficiency in clinic. N6-methyladenosine (m6A) is the most abundant mRNA modification. Here, we aimed to investigate the modulatory effects and underlying mechanisms of m6A in lenvatinib resistance in HCC. Our data revealed that m6A mRNA modification was significantly upregulated in the HCC lenvatinib resistance (HCC-LR) cells compared to parental cells. Methyltransferase-like 3 (METTL3) was the most significantly upregulated protein among the m6A regulators. Either genetic or pharmacological inhibition of m6A methylation through METTL3 deactivation in primary resistant cell line MHCC97H and acquired resistant Huh7-LR cells decreased cell proliferation and increased cell apoptosis upon lenvatinib treatment in vitro and in vivo. In addition, the specific METTL3 inhibitor STM2457 improved tumor response to lenvatinib in multiple mouse HCC models, including subcutaneous, orthotopic and hydrodynamic models. The MeRIP-seq results showed that epidermal growth factor receptor (EGFR) was a downstream target of METTL3. EGFR overexpression abrogated the METTL3 knocked down-induced cell growth arrest upon lenvatinib treatment in HCC-LR cells. Thus, we concluded that targeting METTL3 using specific inhibitor STM2457 improved the sensitivity to lenvatinib in vitro and in vivo, indicating that METTL3 may be a potential therapeutic target to overcome lenvatinib resistance in HCC.


Subject(s)
Carcinoma, Hepatocellular , Drug Resistance, Neoplasm , Liver Neoplasms , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Disease Models, Animal , ErbB Receptors/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Methyltransferases/genetics , RNA, Messenger , Humans , Drug Resistance, Neoplasm/genetics
11.
J Prosthet Dent ; 130(6): 849-857, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35168818

ABSTRACT

STATEMENT OF PROBLEM: Assessing peri-implant marginal bone loss (MBL) and its risk factors with cone beam computed tomography (CBCT) may clarify the risk factors for the all-on-4 (5 or 6) strategy and further improve its survival rate. PURPOSE: The purpose of this retrospective clinical study was to evaluate the implant survival rate, MBL, and associated risk factors of all-on-4 (5 or 6) prostheses after 1 to 4 years of follow-up with CBCT. MATERIAL AND METHODS: A total of 56 participants rehabilitated with 325 implants by using the all-on-4 (5 or 6) concept between October 2015 and December 2019 were included. Outcome measures were cumulative implant survival (life-table analysis) and MBL. Four CBCT scans, a scan immediately after surgery (T0), a scan 1 year after surgery (T1), a scan 2 years after surgery (T2), and a scan 3 to 4 years after treatment (T3), were obtained to evaluate the MBL. The Pearson correlation coefficient analysis and linear mixed models were performed to assess the potential risk factors for MBL (α=.05). RESULTS: The implant survival rate was 99.38%, and the prosthesis survival rate was 100%. The reductions in the vertical buccal bone height (△VBBH) were 0.74 ±0.10 mm (T0-T1), 0.37 ±0.12 mm (T1-T2), and 0.15 ±0.14 mm (T2-T3). Except for T2-T3, the △VBBH showed a significant difference at T0-T1 and T1-T2 (P≤.05). The alterations in vertical mesial bone height (VMBH), vertical distal bone height (VDBH), and vertical lingual bone height (VLBH) were similar to the trend observed in VBBH. The △VBBH (T0-T3) was negatively correlated with the horizontal buccal bone thickness (HBBT) (T0) (r=-.394, P<.001). Linear mixed models revealed that factors such as smoking (P=.001), mandible implant site (P<.001), immediate implant (P=.026), tilted implant (P<.001), female sex (P=.003), systemic disease (P=.025), and bruxism (P=.022) negatively affected MBL. The cantilever length (CL) also had a negative effect on MBL around the implants at the distal extension (P<.001). CONCLUSIONS: The high implant and prosthesis survival rates and low MBL confirmed the predictability of the all-on-4 (5 or 6) concept. Smoking, mandible implant site, systemic disease, bruxism, female sex, immediate implant, tilted implant, and CL were identified as potential risk factors for MBL.


Subject(s)
Alveolar Bone Loss , Bruxism , Dental Implants , Humans , Female , Dental Implants/adverse effects , Retrospective Studies , Follow-Up Studies , Alveolar Bone Loss/diagnostic imaging , Alveolar Bone Loss/etiology , Prosthesis Failure , Bruxism/complications , Survival Rate , Dental Prosthesis, Implant-Supported/adverse effects
12.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36403090

ABSTRACT

The label-free quantification (LFQ) has emerged as an exceptional technique in proteomics owing to its broad proteome coverage, great dynamic ranges and enhanced analytical reproducibility. Due to the extreme difficulty lying in an in-depth quantification, the LFQ chains incorporating a variety of transformation, pretreatment and imputation methods are required and constructed. However, it remains challenging to determine the well-performing chain, owing to its strong dependence on the studied data and the diverse possibility of integrated chains. In this study, an R package EVALFQ was therefore constructed to enable a performance evaluation on >3000 LFQ chains. This package is unique in (a) automatically evaluating the performance using multiple criteria, (b) exploring the quantification accuracy based on spiking proteins and (c) discovering the well-performing chains by comprehensive assessment. All in all, because of its superiority in assessing from multiple perspectives and scanning among over 3000 chains, this package is expected to attract broad interests from the fields of proteomic quantification. The package is available at https://github.com/idrblab/EVALFQ.


Subject(s)
Proteome , Proteomics , Proteome/metabolism , Proteomics/methods , Reproducibility of Results
13.
Eur J Med Res ; 27(1): 276, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36464701

ABSTRACT

BACKGROUND AND AIM: Preoperative evaluation of microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) is important for surgical strategy determination. We aimed to develop and establish a preoperative predictive model for MVI status based on DNA methylation markers. METHODS: A total of 35 HCC tissues and the matched peritumoral normal liver tissues as well as 35 corresponding HCC patients' plasma samples and 24 healthy plasma samples were used for genome-wide methylation sequencing and subsequent methylation haplotype block (MHB) analysis. Predictive models were constructed based on selected MHB markers and 3-cross validation was used. RESULTS: We grouped 35 HCC patients into 2 categories, including the MVI- group with 17 tissue and plasma samples, and MVI + group with 18 tissue and plasma samples. We identified a tissue DNA methylation signature with an AUC of 98.0% and a circulating free DNA (cfDNA) methylation signature with an AUC of 96.0% for HCC detection. Furthermore, we established a tissue DNA methylation signature for MVI status prediction, and achieved an AUC of 85.9%. Based on the MVI status predicted by the DNA methylation signature, the recurrence-free survival (RFS) and overall survival (OS) were significantly better in the predicted MVI- group than that in the predicted MVI + group. CONCLUSIONS: In this study, we identified a cfDNA methylation signature for HCC detection and a tissue DNA methylation signature for MVI status prediction with high accuracy.


Subject(s)
Carcinoma, Hepatocellular , Cell-Free Nucleic Acids , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , DNA Methylation/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Cell-Free Nucleic Acids/genetics
14.
Brief Bioinform ; 23(6)2022 11 19.
Article in English | MEDLINE | ID: mdl-36274234

ABSTRACT

Large-scale metabolomics is a powerful technique that has attracted widespread attention in biomedical studies focused on identifying biomarkers and interpreting the mechanisms of complex diseases. Despite a rapid increase in the number of large-scale metabolomic studies, the analysis of metabolomic data remains a key challenge. Specifically, diverse unwanted variations and batch effects in processing many samples have a substantial impact on identifying true biological markers, and it is a daunting challenge to annotate a plethora of peaks as metabolites in untargeted mass spectrometry-based metabolomics. Therefore, the development of an out-of-the-box tool is urgently needed to realize data integration and to accurately annotate metabolites with enhanced functions. In this study, the LargeMetabo package based on R code was developed for processing and analyzing large-scale metabolomic data. This package is unique because it is capable of (1) integrating multiple analytical experiments to effectively boost the power of statistical analysis; (2) selecting the appropriate biomarker identification method by intelligent assessment for large-scale metabolic data and (3) providing metabolite annotation and enrichment analysis based on an enhanced metabolite database. The LargeMetabo package can facilitate flexibility and reproducibility in large-scale metabolomics. The package is freely available from https://github.com/LargeMetabo/LargeMetabo.


Subject(s)
Metabolomics , Software , Reproducibility of Results , Metabolomics/methods , Mass Spectrometry , Biomarkers
15.
Comput Struct Biotechnol J ; 20: 5054-5064, 2022.
Article in English | MEDLINE | ID: mdl-36187923

ABSTRACT

Schizophrenia (SCZ), bipolar disorder (BP), and major depressive disorder (MDD) are the most common psychiatric disorders. Because there were lots of overlaps among these disorders from genetic epidemiology and molecular genetics, it is hard to realize the diagnoses of these psychiatric disorders. Currently, plenty of studies have been conducted for contributing to the diagnoses of these diseases. However, constructing a classification model with superior performance for differentiating SCZ, BP, and MDD samples is still a great challenge. In this study, the transcriptomic data was applied for discovering key genes and constructing a classification model. In this dataset, there were 268 samples including four groups (67 SCZ patients, 40 BP patients, 57 MDD patients, and 104 healthy controls), which were applied for constructing a classification model. First, 269 probes of differentially expressed genes (DEGs) among four sample groups were identified by the feature selection method. Second, these DEGs were validated by the literature review including disease relevance with the psychiatric disorders of these DEGs, the hub genes in the PPI (protein-protein interaction) network, and GO (gene ontology) terms and pathways. Third, a classification model was constructed using the identified DEGs by machine learning method to classify different groups. The ROC (receiver operator characteristic) curve and AUC (area under the curve) value were used to assess the classification capacity of the model. In summary, this classification model might provide clues for the diagnoses of these psychiatric disorders.

16.
Comput Biol Med ; 148: 105956, 2022 09.
Article in English | MEDLINE | ID: mdl-35981456

ABSTRACT

Two common psychiatric disorders, schizophrenia (SCZ) and bipolar disorder (BP), confer lifelong disability and collectively affect 2% of the world population. Because the diagnosis of psychiatry is based only on symptoms, developing more effective methods for the diagnosis of psychiatric disorders is a major international public health priority. Furthermore, SCZ and BP overlap considerably in terms of symptoms and risk genes. Therefore, the clarity of the underlying etiology and pathology remains lacking for these two disorders. Although many studies have been conducted, a classification model with higher accuracy and consistency was found to still be necessary for accurate diagnoses of SCZ and BP. In this study, a comprehensive dataset was combined from five independent transcriptomic studies. This dataset comprised 120 patients with SCZ, 101 patients with BP, and 149 healthy subjects. The partial least squares discriminant analysis (PLS-DA) method was applied to identify the gene signature among multiple groups, and 341 differentially expressed genes (DEGs) were identified. Then, the disease relevance of these DEGs was systematically performed, including (α) the great disease relevance of the identified signature, (ß) the hub genes of the protein-protein interaction network playing a key role in psychiatric disorders, and (γ) gene ontology terms and enriched pathways playing a key role in psychiatric disorders. Finally, a popular multi-class classifier, support vector machine (SVM), was applied to construct a novel multi-class classification model using the identified signature for SCZ and BP. Using the independent test sets, the classification capacity of this multi-class model was assessed, which showed this model had a strong classification ability.


Subject(s)
Bipolar Disorder , Schizophrenia , Humans , Least-Squares Analysis , Support Vector Machine , Transcriptome
17.
Chem Biodivers ; 19(8): e202200295, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35841592

ABSTRACT

Chronic inflammation plays a positive role in the development and progression of colitis-associated colorectal cancer (CAC). Medicinal plants and their extracts with anti-inflammatory and immunoregulatory properties may be an effective treatment and prevention strategy for CAC. This research aimed to explore the potential chemoprevention of paeoniflorin (PF) for CAC by network pharmacology, molecular docking technology, and in vivo experiments. The results showed that interleukin-6 (IL-6) is a key target of PF against CAC. In the CAC mouse model, PF increased the survival rate of mice and decreased the number and size of colon tumors. Moreover, reduced histological score of colitis and expression of Ki-67 and PCNA were observed in PF-treated mice. In addition, the chemoprevention mechanisms of PF in CAC may be associated with suppression of the IL-6/STAT3 signaling pathway and the IL-17 level. This research provides experimental evidence of potential chemoprevention strategies for CAC treatment.


Subject(s)
Colitis-Associated Neoplasms , Colorectal Neoplasms , Animals , Cell Transformation, Neoplastic , Chemoprevention , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/prevention & control , Disease Models, Animal , Glucosides , Interleukin-6/metabolism , Mice , Molecular Docking Simulation , Monoterpenes , Network Pharmacology , STAT3 Transcription Factor/metabolism
18.
Sci Total Environ ; 848: 157632, 2022 Nov 20.
Article in English | MEDLINE | ID: mdl-35907543

ABSTRACT

Tufa is a porous freshwater deposit comprising primarily calcite (CaCO3) and organic matter. Massive tufa depositions can spread for up to several kilometers, forming tufa landscapes that have been recognized as national parks and World Heritage Sites. Previous studies have suggested that enhanced soil erosion owing to human activities (e.g., deforestation and agriculture) is one of the major causes of fluvial tufa decline in many places worldwide. In 2017, an Ms 7.0 earthquake occurred in Jiuzhaigou, which greatly increased soil erosion in the catchment. We compared the water chemistry and tufa deposition before and after the earthquake to understand the impact of soil erosion on tufa landscapes in Jiuzhaigou. After the earthquake, we found that high turbidity greatly reduced the aesthetic value of the lakes. Enhanced soil erosion increased NO3-, dissolved organic carbon (DOC), and PO43- concentrations in surface water, which may worsen the problems of increased algal biomass and marsh development. Enhanced soil erosion reduced alkalinity, HCO3-, and the saturation index of calcite (SIc), thereby decreasing the potential to generate new calcite. Enhanced soil erosion may also increase the annual tufa deposition rates by increasing the soil and organic materials in the sediment. In addition, the tufa sediment affected by enhanced soil erosion was loose, highly porous, and contained numerous diatoms. This study provides observational data to explain the impact mechanisms of soil erosion on tufa landscapes and assess the necessity and achievements of artificial soil erosion control.


Subject(s)
Earthquakes , Soil Erosion , Calcium Carbonate , China , Humans , Soil , Water
19.
J Gastroenterol Hepatol ; 37(8): 1446-1454, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35771719

ABSTRACT

Cancer organoids, a three-dimensional (3D) culture system of cancer cells derived from tumor tissues, recapitulate physiological structure of the parental tumor. Different tumor organoids have been established for a variety of tumor types, such as colorectal, liver, stomach, pancreatic and brain tumors. Some tumor organoid biobanks are built to screen and discover novel antitumor drug targets. Moreover, patients-derived tumor organoids (PDOs) could predict treatment response to chemoradiotherapy, targeted therapy and immunotherapy to provide guidance for personalized cancer therapy. In this review, we provide an updated overview of tumor organoid development, summarize general approach to establish tumor organoids, and discuss the application of anti-cancer drug screening based on tumor organoid and its application in personalized therapy. We also outline the opportunities and challenges for organoids to guide precision medicine.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Evaluation, Preclinical , Early Detection of Cancer , Humans , Neoplasms/drug therapy , Organoids/pathology , Technology
20.
Brief Bioinform ; 23(4)2022 07 18.
Article in English | MEDLINE | ID: mdl-35758241

ABSTRACT

The discovery of proper molecular signature from OMIC data is indispensable for determining biological state, physiological condition, disease etiology, and therapeutic response. However, the identified signature is reported to be highly inconsistent, and there is little overlap among the signatures identified from different biological datasets. Such inconsistency raises doubts about the reliability of reported signatures and significantly hampers its biological and clinical applications. Herein, an online tool, ConSIG, was constructed to realize consistent discovery of gene/protein signature from any uploaded transcriptomic/proteomic data. This tool is unique in a) integrating a novel strategy capable of significantly enhancing the consistency of signature discovery, b) determining the optimal signature by collective assessment, and c) confirming the biological relevance by enriching the disease/gene ontology. With the increasingly accumulated concerns about signature consistency and biological relevance, this online tool is expected to be used as an essential complement to other existing tools for OMIC-based signature discovery. ConSIG is freely accessible to all users without login requirement at https://idrblab.org/consig/.


Subject(s)
Proteomics , Transcriptome , Gene Ontology , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...