Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Public Health ; 11: 1210669, 2023.
Article in English | MEDLINE | ID: mdl-37869197

ABSTRACT

Objectives: The main objective was to examine the relationship between weight-adjusted waist index (WWI) and the prevalence of hypertension among individuals aged ≥60 years who participated in the NHANES between 2011 and 2018 years. Methods: The data for this study were obtained from the National Health and Nutrition Examination Survey (NHANES) 2011-2018. In this population-based study, we focused on participants who were over 60 years old. Data were collected from the aforementioned survey, and the variable of interest was WWI, which was calculated as waist (cm) divided by the square root of body weight (kg). Multivariable logistic regression model was applied to calculate adjusted ORs with 95% CIs in order to explore any possible correlation between WWI and the prevalence of hypertension. Subgroup analysis were used to verify the stability of the relationship between WWI and the prevalence of hypertension. The interaction tests were also conducted in this research. Results: Results revealed that adults aged ≥60 years who were in the highest WWI quartile had significantly higher chances of developing hypertension when compared to those in the lowest quartile, after adjusting for covariates and potential confounders (p < 0.001). Conclusion: These findings suggest that there is a strong correlation between elevated levels of WWI and the risk of developing hypertension among older adults. As such, WWI could serve as a unique and valuable biomarker for identifying hypertension risk at an earlier stage in the older adults population.


Subject(s)
Hypertension , Obesity , Humans , Aged , Middle Aged , Nutrition Surveys , Prevalence , Body Mass Index , Obesity/epidemiology , Hypertension/epidemiology
2.
Front Cardiovasc Med ; 9: 836964, 2022.
Article in English | MEDLINE | ID: mdl-35425822

ABSTRACT

Atrial standstill (AS) is a rare condition defined by the lack of atrial electrical and mechanical activities. It is usually clinically manifested as symptomatic bradycardia, which requires permanent pacemaker (PPM) implantation. Traditional right ventricular apical pacing causes electrical and mechanical dyssynchrony resulting in left ventricular dysfunction, heart failure, and arrhythmias. As a novel physiological pacing strategy, left bundle branch area pacing (LBBaP) has demonstrated effectiveness and safety in recent years, but its application in exceptional conditions is rarely reported. We report the case of a 47-year-old female, who was diagnosed with AS complicated with a giant atrium, and successfully received a single-chamber PPM with LBBaP.

3.
J Mater Chem B ; 10(11): 1821-1832, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35201249

ABSTRACT

Theranostic nanoplatforms for multimodal diagnosis and treatment of tumors are a current research hotspot in the field of nanomedicine. MOF-based theranostic nanoplatforms integrating drug delivery with magnetic resonance imaging (MRI) have attracted broad attention in cancer diagnosis and therapy. However, due to the poor chemical and colloidal stability of MOFs, as well as their poor biocompatibility, MOF-based theranostic nanoplatforms still face critical challenges in cancer treatment applications. Here, we devised a theranostic nanoplatform based on a bioinspired polydopamine (PDA)-functionalized metal-organic framework MIL-53(Fe) loaded with camptothecin (CPT) for MRI-guided pH-sensitive chemotherapy. On the nanoplatform, MIL-53(Fe) with good biodegradability has large pore volume and showed a high loading content of antitumor drug CPT (43.07%). To overcome the disadvantages of poor aqueous solubility of MIL-53(Fe) and easy photodecomposition of CPT, the CPT-loaded MIL-53(Fe) was coated with a layer of PDA, resulting in theranostic nanoparticles (PDA@CPT@MIL-53(Fe)). The theranostic nanoparticles exhibited excellent stability and pH-sensitive drug release. In vitro toxicity studies showed that the nanoparticles could be efficiently taken up by breast cancer MCF-7 cells and exhibited high cytotoxicity. In vivo antitumor assay showed the great antitumor effect of the theranostic nanoparticles by using a zebrafish xenograft model. Furthermore, the incorporation of Fe affords the PDA@CPT@MIL-53(Fe) with potential MRI; in vitro MRI showed the nanoparticles exhibit an excellent MRI performance with an r2 value up to 50 mM-1 s-1. These results suggest that CPT-loaded MIL-53(Fe) coated with PDA is a promising theranostic platform for MRI imaging and cancer therapy.


Subject(s)
Breast Neoplasms , Camptothecin , Iron , Animals , Female , Humans , Camptothecin/pharmacology , Camptothecin/therapeutic use , Hydrogen-Ion Concentration , Indoles , Iron/chemistry , Magnetic Resonance Imaging , Phototherapy , Polymers , Precision Medicine , Theranostic Nanomedicine , Zebrafish
4.
Biomater Sci ; 9(1): 148-156, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-32936130

ABSTRACT

Ultrathin transition metal dichalcogenides (TMDs) seem to have a promising future in the field of theranostic agents due to their excellent near-infrared light absorption capacity and large specific surface area. Plenty of previous studies focused on the therapeutic effects of the materials, but were less concerned with the detailed studies of biocompatibility for clinical transformation. In this work, ultrathin WS2 nanosheets coated with bovine serum protein (BSA) (WS2@BSA NSs) were selected as experimental subjects with favorable biocompatibility to explore their potential as a theranostic agent. Firstly, ultrathin WS2 nanosheets were prepared by ultrasound-assisted exfoliation using n-methyl pyrrolidone (NMP) as the liquid phase, followed by coating with bovine serum protein. The physical and chemical properties of WS2@BSA NSs were investigated. Secondly, the biocompatibility experiments that are most relevant to clinical transformation were divided into cell level experiments and in vivo experiments with zebrafish as the model organism. Finally, to explore further applications for the diagnosis and treatment of tumors, the in vitro photothermal effect and the X-ray computed tomography (CT) imaging capability of WS2@BSA NSs were investigated. The obtained results were promising in terms of biocompatibility and theranostics, which suggested the potential of WS2@BSA NSs for use as a multifunctional theranostic agent in clinics.


Subject(s)
Precision Medicine , Zebrafish , Animals , Cattle , Cell Line, Tumor , Theranostic Nanomedicine , Tomography, X-Ray Computed
5.
Mater Sci Eng C Mater Biol Appl ; 100: 688-696, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30948105

ABSTRACT

In this study, we prepared a dual functional albumin-based nanoparticle (gal-BSA-NPs) by sonochemical method which allowed an efficient encapsulation for Bilirubin (BR) through its adsorption capacity and hydrophobic interaction. Our study provided a possibility that the blank gal-BSA-NPs can replace BSA with better ability for the adsorption of excessive BR. Additionally, we unearthed the potential anti-tumor activity of BR on HepG2 cells and developed GSH-responsive BR-loaded gal-BSA-NPs for the treatment of liver cancer. The results showed BR-loaded gal-BSA-NPs effectively enhanced cellular uptake and exerted strong inhibition on tumor cell proliferation and migration. In vivo anti-tumor study revealed BR-loaded gal-BSA-NPs showed strong anti-tumor effects. Our study not only revealed the anti-tumor potency of BR, but also brought conventional BSA with novel application in liver cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Bilirubin/isolation & purification , Galactose/chemical synthesis , Nanoparticles/chemistry , Serum Albumin, Bovine/chemical synthesis , Ultrasonics/methods , Adsorption , Animals , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Drug Liberation , Hemolysis/drug effects , Humans , Mice, Inbred BALB C , Mice, Nude , Nanoparticles/ultrastructure
6.
Mikrochim Acta ; 186(5): 294, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31016393

ABSTRACT

In the Fenton reaction, ferrous ion acts as a catalyst and reacts with hydrogen peroxide (H2O2) to produce hydroxy radicals (·OH) and hydroperoxy radicals (·OOH). Both have much stronger oxidization ability than H2O2. A fluorescent probe for H2O2 is described here that was obtained by covalent conjugation of carbon quantum dots to gold nanoclusters (AuNCs). The conjugate, under 360 nm photoexcitation, displays dual (blue and red) emission, with peaks located at 450 and 640 nm. When introducing ·OH radicals via the Fenton reaction, the fluorescence intensities of both the CQDs and the AuNCs are decreased. The ratio of the fluorescence at the two peaks is related to the concentration of H2O2 in the 1.25 nM to 10 µM concentration range, and the detection limit is 0.16 nM. The probe was applied to the determination of H2O2 in milk and toothpaste and to cell imaging. Graphical abstract Schematic diagram of the FRET-based fluorescent probe and enhanced performance of hydrogen peroxide detection via Fenton reaction. The fluorescence intensity of CQD-AuNCs nanoaster was decreased as introducing H2O2 to the probe, and can be applied to the determination of milk and toothpaste and cells imaging.

7.
ACS Biomater Sci Eng ; 5(2): 1005-1015, 2019 Feb 11.
Article in English | MEDLINE | ID: mdl-33405791

ABSTRACT

The ultrasmall sizes of nanoparticles have attracted significant attention for potential applications in the fields of catalysis and nanomedicine. Herein, we reported on the green preparation and X-ray computed tomography (CT) imaging of ultrasmall bimetallic bovine serum albumin-directed gold-silver (Au-Ag@BSA) nanoparticles (2-4 nm) using BSA as a stabilizing and template-directed agent. Further, the effects of synthesis conditions were systematically explored to prepare products by adjusting the different molar ratios of Au/Ag. The resulting Au-Ag@BSA nanoparticles exhibited the spherical shape, well-dispersed ability, as well as long-term room-temperature stability. The cytotoxicity effects of Au-Ag@BSA nanoparticles on A549 and MCF-7 cells were compared with those of individual Ag nanoparticles, and the results indicated a lower cytotoxicity effect by Au-Ag@BSA nanoparticles. Furthermore, the in vivo toxicity of Au-Ag@BSA nanoparticles was investigated in the early stage zebrafish embryos. The results indicate that there are not any obvious changes of survival and hatching percentages at multiple growth stages (4-120 hpf) even with a high level of Au-Ag@BSA nanoparticles (up to 80 mM), revealing good biocompatibility. Interestingly, a rational design of the Au/Ag molar ratio (3:2) surprisingly possessed enhanced CT performance compared to the performance of the Au nanoparticles and iohexol. Accordingly, this study highlights a new prospect in the green preparation of ultrasmall alloy nanomaterials with good biocompatibility and will be of great interest in developing CT contrast agent, catalyst, as well as drug delivery carrier.

8.
Chem Commun (Camb) ; 54(61): 8522-8525, 2018 Jul 26.
Article in English | MEDLINE | ID: mdl-30009311

ABSTRACT

ESIPT-based fluorescence probes are emerging as an attractive tool for the detection of biologically relevant analytes owing to their unique photophysical properties. In this work, we have developed an ESIPT-based fluorescence probe (TCBT-OMe) for the detection of HClO/ClO- through the attachment of a bioorthogonal dimethylthiocarbamate linker. TCBT-OMe was shown to rapidly detect HClO/ClO- (<10 s) at biologically relevant concentrations (LoD = 0.16 nM) and have an excellent selectivity towards others ROS/RNS and amino acids. Therefore, TCBT-OMe was tested in live cells and was successfully shown to be able to detect endogenous and exogenous HClO/ClO- in HeLa cells. Additionally, TCBT-OMe acts as a dual input logic gate for Hg2+ and H2O2. Interestingly, Hg2+ alone gradually causes a fluorescence response but requires >30 min to produce a fluorescence response. Test strips containing TCBT-OMe were prepared and were demonstrated as an effective way to detect HClO/ClO- in water. Furthermore, TCBT-OMe was shown to detect exogenously added HClO/ClO- in three different water samples with little interference thus demonstrating the effectiveness as a method for the detection of HClO/ClO- in drinking water samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...