Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 7(41): eabg9715, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34623910

ABSTRACT

Memory is often conceived as a dynamic process that involves substantial transformations of mental representations. However, the neural mechanisms underlying these transformations and their role in memory formation and retrieval have only started to be elucidated. Combining intracranial EEG recordings with deep neural network models, we provide a detailed picture of the representational transformations from encoding to short-term memory maintenance and long-term memory retrieval that underlie successful episodic memory. We observed substantial representational transformations during encoding. Critically, more pronounced semantic representational formats predicted better subsequent long-term memory, and this effect was mediated by more consistent item-specific representations across encoding events. The representations were further transformed right after stimulus offset, and the representations during long-term memory retrieval were more similar to those during short-term maintenance than during encoding. Our results suggest that memory representations pass through multiple stages of transformations to achieve successful long-term memory formation and recall.

2.
Proc Natl Acad Sci U S A ; 117(51): 32329-32339, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33288707

ABSTRACT

Visual short-term memory (VSTM) enables humans to form a stable and coherent representation of the external world. However, the nature and temporal dynamics of the neural representations in VSTM that support this stability are barely understood. Here we combined human intracranial electroencephalography (iEEG) recordings with analyses using deep neural networks and semantic models to probe the representational format and temporal dynamics of information in VSTM. We found clear evidence that VSTM maintenance occurred in two distinct representational formats which originated from different encoding periods. The first format derived from an early encoding period (250 to 770 ms) corresponded to higher-order visual representations. The second format originated from a late encoding period (1,000 to 1,980 ms) and contained abstract semantic representations. These representational formats were overall stable during maintenance, with no consistent transformation across time. Nevertheless, maintenance of both representational formats showed substantial arrhythmic fluctuations, i.e., waxing and waning in irregular intervals. The increases of the maintained representational formats were specific to the phases of hippocampal low-frequency activity. Our results demonstrate that human VSTM simultaneously maintains representations at different levels of processing, from higher-order visual information to abstract semantic representations, which are stably maintained via coupling to hippocampal low-frequency activity.


Subject(s)
Hippocampus/physiology , Memory, Short-Term/physiology , Visual Perception/physiology , Adult , Electroencephalography/methods , Electroencephalography/statistics & numerical data , Epilepsy , Female , Humans , Male , Neural Networks, Computer , Nontherapeutic Human Experimentation
3.
J Food Prot ; 80(3): 420-424, 2017 03.
Article in English | MEDLINE | ID: mdl-28199148

ABSTRACT

The aim of this study was to determine the presence and characteristics of Escherichia coli in ready-to-eat (RTE) foods. A total of 300 RTE foods samples were collected in Shaanxi Province, People's Republic of China: 50 samples of cooked meat, 165 samples of vegetable salad, 50 samples of cold noodles, and 35 samples of salted boiled peanuts. All samples were collected during summer (in July to October) 2011 and 2012 and surveyed for the presence of E. coli . E. coli isolates recovered were classified by phylogenetic typing using a PCR assay. The presence of Shiga toxin genes 1 (stx1) and 2 (stx2) was determined for these E. coli isolates by PCR, and all isolates were analyzed for antimicrobial susceptibility and the presence of class 1 integrons. Overall, 267 (89.0%) RTE food samples were positive for E. coli : 49 cold noodle, 46 cooked meat, 150 salad vegetable, and 22 salted boiled peanut samples. Of the 267 E. coli isolates, 73.0% belong to phylogenetic group A, 12.4% to group B1, 6.4% to group B2, and 8.2% to group D. All isolates were negative for both Shiga toxin genes. Among the isolates, 74.2% were resistant to at least one antimicrobial agent, and 17.6% were resistant to three or more antimicrobial agents. Resistance to ampicillin (75.6% of isolates) and tetracycline (73.1% of isolates) was most frequently detected; 26.2% of E. coli isolates and 68.8% of multidrug-resistant E. coli isolates were positive for class 1 integrons. All isolates were sensitive to amikacin. Our findings indicate that RTE foods in Shaanxi were commonly contaminated with antibiotic-resistant E. coli , which may pose a risk for consumer health and for transmission of antibiotic resistance. Future research is warranted to track the contamination sources and develop appropriate steps that should be taken by government, industry, and retailers to reduce microbial contamination in RTE foods.


Subject(s)
Escherichia coli/isolation & purification , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents , China , Drug Resistance, Bacterial/genetics , Food Microbiology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...