Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1408602, 2024.
Article in English | MEDLINE | ID: mdl-38867882

ABSTRACT

Fruit length (FL) is an important economical trait that affects fruit yield and appearance. Pumpkin (Cucurbita moschata Duch) contains a wealth genetic variation in fruit length. However, the natural variation underlying differences in pumpkin fruit length remains unclear. In this study, we constructed a F2 segregate population using KG1 producing long fruit and MBF producing short fruit as parents to identify the candidate gene for fruit length. By bulked segregant analysis (BSA-seq) and Kompetitive Allele-Specific PCR (KASP) approach of fine mapping, we obtained a 50.77 kb candidate region on chromosome 14 associated with the fruit length. Then, based on sequence variation, gene expression and promoter activity analyses, we identified a candidate gene (CmoFL1) encoding E3 ubiquitin ligase in this region may account for the variation of fruit length. One SNP variation in promoter of CmoFL1 changed the GT1CONSENSUS, and DUAL-LUC assay revealed that this variation significantly affected the promoter activity of CmoFL1. RNA-seq analysis indicated that CmoFL1 might associated with the cell division process and negatively regulate fruit length. Collectively, our work identifies an important allelic affecting fruit length, and provides a target gene manipulating fruit length in future pumpkin breeding.

2.
J Org Chem ; 88(20): 14753-14759, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37822159

ABSTRACT

A novel cryptand-like anion receptor 1 was synthesized in reasonable yield by a one-step condensation reaction. The UV-vis spectroscopic titrations indicated that cryptand 1 bound AcO- in preference to other monovalent anions (including its competing F- and H2PO4-) in CH3CN, generating a 1:1 binding complex with Ka = 51,000 M-1. Moreover, the crystal structures revealed that the acetate ion was encapsulated inside the cryptand's cavity in a 1:1 manner, through multiple N-H···O hydrogen bonds (although having two different crystal forms).

SELECTION OF CITATIONS
SEARCH DETAIL