Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
ACS Nano ; 18(21): 13696-13713, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38751164

ABSTRACT

The potential of human umbilical cord mesenchymal stromal cell-derived extracellular vesicles (hucMSC-EVs) in wound healing is promising, yet a comprehensive understanding of how fibroblasts and keratinocytes respond to this treatment remains limited. This study utilizes single-cell RNA sequencing (scRNA-seq) to investigate the impact of hucMSC-EVs on the cutaneous wound microenvironment in mice. Through rigorous single-cell analyses, we unveil the emergence of hucMSC-EV-induced hematopoietic fibroblasts and MMP13+ fibroblasts. Notably, MMP13+ fibroblasts exhibit fetal-like expressions of MMP13, MMP9, and HAS1, accompanied by heightened migrasome activity. Activation of MMP13+ fibroblasts is orchestrated by a distinctive PIEZO1-calcium-HIF1α-VEGF-MMP13 pathway, validated through murine models and dermal fibroblast assays. Organotypic culture assays further affirm that these activated fibroblasts induce keratinocyte migration via MMP13-LRP1 interactions. This study significantly contributes to our understanding of fibroblast heterogeneities as well as intercellular interactions in wound healing and identifies hucMSC-EV-induced hematopoietic fibroblasts as potential targets for reprogramming. The therapeutic targets presented by these fibroblasts offer exciting prospects for advancing wound healing strategies.


Subject(s)
Extracellular Vesicles , Fibroblasts , Mesenchymal Stem Cells , Single-Cell Analysis , Umbilical Cord , Wound Healing , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Umbilical Cord/cytology , Umbilical Cord/metabolism , Animals , Mice , Fibroblasts/metabolism , Sequence Analysis, RNA , Cells, Cultured , Cell Movement , Matrix Metalloproteinase 13/metabolism , Fetus
2.
Int J Nanomedicine ; 19: 3555-3575, 2024.
Article in English | MEDLINE | ID: mdl-38638364

ABSTRACT

Background: Neutrophils rapidly accumulate in large numbers at sites of tissue damage, exhibiting not only their well-known bactericidal capabilities but also playing crucial roles in angiogenesis and tissue repair. While exosomes derived from human umbilical cord mesenchymal stem cells (HucMSC-Exo) have emerged as a promising therapeutic tool, their exact mechanisms of action remain partly elusive. We hypothesize that HucMSC-Exo treatment may modulate neutrophil phenotypes, thereby significantly influencing wound healing outcomes. Methods: HucMSC-Exo were isolated via ultracentrifugation and subsequently administered through subcutaneous injection into full-thickness cutaneous wounds in mice. To determine the impact of host neutrophils on the healing effects of HucMSC-Exo in skin injuries, strategies including neutrophil depletion and adoptive transfer were employed. Flow cytometry was used to evaluate the proportion of N2 subtype neutrophils in both normal and diabetic wounds, and the effect of HucMSC-Exo on this proportion was assessed. Furthermore, the mitochondrial metabolic reprogramming driven by HucMSC-Exo during N2 polarization was investigated through JC1 staining, ATP quantification, fatty acid uptake assays, and assessment of FAO-related genes (Cpt1b, Acadm, and Acadl). Results: Depleting host neutrophils strikingly dampened prohealing effect of HucMSC-Exo on skin injury, while adoptive transfer of bone marrow neutrophils rescued this process. During normal healing process, some neutrophils expressed N2 markers, in contrast, diabetic wounds exhibited a reduced expression of N2 markers. After treatment with HucMSC-Exo, most neutrophils increased the phosphorylation of STAT6, leading to mitochondrial metabolic reprogramming and thus acquired an N2 phenotype. These N2 neutrophils, polarized by HucMSC-Exo, boosted the release of proangiogenic factors, particularly BV8, a myeloid cell-derived proangiogenic factor, and induced angiogenesis thereby favoring tissue restoration. Conclusion: This research uniquely demonstrates the identification of N2 neutrophils in skin injury and shows that HucMSC-Exo could skew neutrophils toward N2 phenotype, enhancing our insight into how cells react to HucMSC-Exo.


Subject(s)
Diabetes Mellitus , Exosomes , Mesenchymal Stem Cells , Mice , Humans , Animals , Neutrophils , Angiogenesis , Wound Healing , Mesenchymal Stem Cells/metabolism , Diabetes Mellitus/metabolism , Exosomes/metabolism , Umbilical Cord
3.
Article in English | MEDLINE | ID: mdl-38230305

ABSTRACT

Background: Solar lentigines (SLs), serving as a prevalent characteristic of skin photoaging, present as cutaneous aberrant pigmentation. However, the underlying pathogenesis remains unclear and there is a dearth of reliable diagnostic biomarkers. Objective: The aim of this study was to identify diagnostic biomarkers for SLs and reveal its immunological features. Methods: In this study, gene expression profiling datasets (GSE192564 and GSE192565) of SLs were obtained from the GEO database. The GSE192564 was used as the training group for screening of differentially expressed genes (DEGs) and subsequent depth analysis. Gene set enrichment analysis (GSEA) was employed to explore the biological states associated with SLs. The weighted gene co-expression network analysis (WGCNA) was employed to identify the significant modules and hub genes. Then, the feature genes were further screened by the overlapping of hub genes and up-regulated differential genes. Subsequently, an artificial neural network was constructed for identifying SLs samples. The GSE192565 was used as the test group for validation of feature genes expression level and the model's classification performance. Furthermore, we conducted immune cell infiltration analysis to reveal the immune infiltration landscape of SLs. Results: The 9 feature genes were identified as diagnostic biomarkers for SLs in this study. And an artificial neural network based on diagnostic biomarkers was successfully constructed for identification of SLs. GSEA highlighted potential role of immune system in pathogenesis of SLs. SLs samples had a higher proportion of several immune cells, including activated CD8 T cell, dendritic cell, myeloid-derived suppressor cell and so on. And diagnostic biomarkers exhibited a strong relationship with the infiltration of most immune cells. Conclusion: Our study identified diagnostic biomarkers for SLs and explored its immunological features, enhancing the comprehension of its pathogenesis.

4.
Microbiol Spectr ; 11(3): e0090723, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37199655

ABSTRACT

Trichosporon asahii is an emerging opportunistic pathogen that causes potentially fatal disseminated trichosporonosis. The global prevalence of coronavirus disease 2019 (COVID-19) poses an increasing fungal infection burden caused by T. asahii. Allicin is the main biologically active component with broad-spectrum antimicrobial activity in garlic. In this study, we performed an in-depth analysis of the antifungal characteristics of allicin against T. asahii based on physiological, cytological, and transcriptomic assessments. In vitro, allicin inhibited the growth of T. asahii planktonic cells and biofilm cells significantly. In vivo, allicin improved the mean survival time of mice with systemic trichosporonosis and reduced tissue fungal burden. Electron microscopy observations clearly demonstrated damage to T. asahii cell morphology and ultrastructure caused by allicin. Furthermore, allicin increased intracellular reactive oxygen species (ROS) accumulation, leading to oxidative stress damage in T. asahii cells. Transcriptome analysis showed that allicin treatment disturbed the biosynthesis of cell membrane and cell wall, glucose catabolism, and oxidative stress. The overexpression of multiple antioxidant enzymes and transporters may also place an additional burden on cells, causing them to collapse. Our findings shed new light on the potential of allicin as an alternative treatment strategy for trichosporonosis. IMPORTANCE Systemic infection caused by T. asahii has recently been recognized as an important cause of mortality in hospitalized COVID-19 patients. Invasive trichosporonosis remains a significant challenge for clinicians, due to the limited therapeutic options. The present work suggests that allicin holds great potential as a therapeutic candidate for T. asahii infection. Allicin demonstrated potent in vitro antifungal activity and potential in vivo protective effects. In addition, transcriptome sequencing provided valuable insights into the antifungal effects of allicin.


Subject(s)
COVID-19 , Trichosporon , Trichosporonosis , Animals , Mice , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Trichosporonosis/drug therapy , Trichosporonosis/microbiology , Trichosporon/physiology , Antioxidants/pharmacology , Antioxidants/therapeutic use
5.
Front Immunol ; 14: 1142088, 2023.
Article in English | MEDLINE | ID: mdl-36999022

ABSTRACT

Introduction: Full-thickness skin wound healing remains a serious undertaking for patients. While stem cell-derived exosomes have been proposed as a potential therapeutic approach, the underlying mechanism of action has yet to be fully elucidated. The current study aimed to investigate the impact of exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-Exosomes) on the single-cell transcriptome of neutrophils and macrophages in the context of wound healing. Methods: Utilizing single-cell RNA sequencing, the transcriptomic diversity of neutrophils and macrophages was analyzed in order to predict the cellular fate of these immune cells under the influence of hucMSC-Exosomes and to identify alterations of ligand-receptor interactions that may influence the wound microenvironment. The validity of the findings obtained from this analysis was subsequently corroborated by immunofluorescence, ELISA, and qRT-PCR. Neutrophil origins were characterized based on RNA velocity profiles. Results: The expression of RETNLG and SLC2A3 was associated with migrating neutrophils, while BCL2A1B was linked to proliferating neutrophils. The hucMSC-Exosomes group exhibited significantly higher levels of M1 macrophages (215 vs 76, p < 0.00001), M2 macrophages (1231 vs 670, p < 0.00001), and neutrophils (930 vs 157, p < 0.00001) when compared to control group. Additionally, it was observed that hucMSC-Exosomes elicit alterations in the differentiation trajectories of macrophages towards more anti-inflammatory phenotypes, concomitant with changes in ligand-receptor interactions, thereby facilitating healing. Discussion: This study has revealed the transcriptomic heterogeneity of neutrophils and macrophages in the context of skin wound repair following hucMSC-Exosomes interventions, providing a deeper understanding of cellular responses to hucMSC-Exosomes, a rising target of wound healing intervention.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Humans , Mice , Animals , Neutrophils , Exosomes/genetics , Exosomes/metabolism , Ligands , Wound Healing/genetics , Mesenchymal Stem Cells/metabolism , Umbilical Cord , Macrophages/metabolism , Sequence Analysis, RNA
7.
Mycoses ; 66(6): 467-476, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36680377

ABSTRACT

BACKGROUND: Trichosporon asahii is an opportunistic pathogenic yeast-like fungus. Phospholipase B1 (PLB1) is an important virulence factor of pathogenic fungi such as Candida albicans and Cryptococcus neoformans, and there are few studies on the role of PLB1 in the pathogenicity of T. asahii. OBJECTIVES: To investigate the role of PLB1 in the pathogenicity of T. asahii. METHODS: A strain with low secretion of PLB1 (4848) was screened, a PLB1 overexpression strain (PLB1OX ) was constructed, and the differences in histopathology, fungal load of organ, survival time of mice, the levels of IL-6, IL-10, TNF-α, and GM-GSF in the serum and organs caused by the two strains were compared. RESULTS: Histopathology showed that spores and hyphae were observed in both groups, and PLB1OX led to more fungal invasion. The fungal loads in the kidney, lung, spleen and liver in the PLB1OX group were significantly higher than those in the 4848 group, and the survival time of mice was significantly lower than that in the 4848 group. The levels of TNF-α in the serum, liver, spleen, lung and kidney of the PLB1OX group were lower than those of the 4848 group, while the level of IL-10 in the serum was higher than that of the 4848 group. CONCLUSIONS: These results suggest that PLB1 can enhance the invasive function of T. asahii and affect the secretion of TNF-α and IL-10 which may affect the host antifungal immune response, providing evidence that PLB1 plays a role in the pathogenic infection of T. asahii.


Subject(s)
Interleukin-10 , Trichosporon , Animals , Mice , Phospholipases , Trichosporon/genetics , Tumor Necrosis Factor-alpha , Virulence , Lysophospholipase/metabolism
10.
J Evid Based Med ; 15(3): 284-301, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36117295

ABSTRACT

AIM: Cutaneous warts caused by human papillomavirus are benign proliferative lesions that occur at any ages in human lives. Updated, comprehensive and systematic evidence-based guidelines to guide clinical practice are urgently needed. METHODS: We collaborated with multidisciplinary experts to formulate this guideline based on evidences of already published literature, focusing on 13 clinical questions elected by a panel of experts. We adopted Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to form classification of recommendations as well as the improved Delphi method to retain respective recommendations with a consensus degree of over 80%. RESULTS: Our guideline covered aspects of the diagnosis and treatment of cutaneous warts such as diagnostic gold standard, transmission routes, laboratory tests, treatment principle, clinical cure criterion, definitions, and treatments of common warts, flat warts, plantar warts, condyloma acuminatum, and epidermodysplasia verruciformis. Recommendations about special population such as children and pregnant women are also listed. In total, 49 recommendations have been obtained. CONCLUSIONS: It is a comprehensive and systematic evidence-based guideline and we hope this guideline could systematically and effectively guide the clinical practice of cutaneous warts and improve the overall levels of medical services.


Subject(s)
Warts , Child , Female , Humans , Papillomaviridae , Pregnancy , Warts/diagnosis , Warts/pathology , Warts/therapy
12.
Asian J Surg ; 45(12): 3001-3002, 2022 12.
Article in English | MEDLINE | ID: mdl-35788323
14.
Lasers Surg Med ; 54(5): 716-724, 2022 07.
Article in English | MEDLINE | ID: mdl-35234299

ABSTRACT

BACKGROUND AND OBJECTIVES: Single-use of artesunate (ART) or 595-nm pulsed-dye laser (PDL) has proven clinical efficacy in the treatment of hypertrophic scars (HSs), yet little research has been done on the combined use of ART and PDL. Bone morphogenetic protein-7 (BMP-7) and Fas are recognized to be two important proteins in reducing scar formation. This study was designed to observe the effect of ART combined with 595-nm PDL in the treatment of HS in rabbit models, and investigate the effect of such protocol on the expression of BMP-7 and Fas in rabbit models. STUDY DESIGN/MATERIALS AND METHODS: Twenty-four New Zealand white rabbits were randomly divided into the control group, ART group, PDL group, and combined treatment (ART + PDL) group. ART was respectively applied to the ART group and combined treatment group. Treatment was once every 2-week for a total of three sessions for both groups. Animals in the PDL group were simply treated with 595-nm PDL. Then, hematoxylin & eosin and Van Gieson straining, immunohistochemical study, enzyme-linked immunosorbent assay (ELISA), Cell counting kit-8 test, western blot assay, and real-time polymerase chain reaction (RT-PCR) were carried out to observe the development of HS samples and expression of BMP-7 and Fas proteins in the sample tissues. RESULTS: After treatment, the scar samples grew lower and flatter, which was particularly evident in the combined treatment group, with notably inhibited fibroblast and collagen compared to other groups (p < 0.001). Western blot assay and RT-PCR demonstrated that the expression of BMP-7 was most increased in scar samples treated by ART + PDL. BMP-7 level was correspondingly and notably upregulated in treatment groups, especially in the ART + PDL group. In addition, relevant expression of Fas was also higher after treatment, especially in the ART + PDL group compared to either ART or 595-nm PDL group. The difference was significant among groups (p < 0.001). CONCLUSIONS: Combined use of ART and 595-nm PDL can inhibit HSs in rabbit models via inhibiting extra fibroblast and collagens. The potential mechanism may be involved in enhanced BMP-7 and Fas expression. Our observations may create an alternative therapeutic strategy for HSs in the clinic.


Subject(s)
Cicatrix, Hypertrophic , Lasers, Dye , Animals , Artesunate/therapeutic use , Bone Morphogenetic Protein 7/therapeutic use , Cicatrix, Hypertrophic/pathology , Cicatrix, Hypertrophic/therapy , Collagen , Lasers, Dye/therapeutic use , Rabbits , Treatment Outcome
15.
Burns ; 48(3): 662-671, 2022 05.
Article in English | MEDLINE | ID: mdl-34103199

ABSTRACT

BACKGROUND AND OBJECTIVES: Both artesunate and fractional CO2 laser have been proved effective in the treatment of hypertrophic scars, yet little data are available for the efficacy of artesunate combined with fractional CO2 laser. In order to assess the pre-clinical significance and the underlying mechanism of this combined treatment profile, we attempted to observe the effectiveness of this therapy in rabbit models through determining the expression of BMP-7 and Fas. MATERIALS AND METHODS: Twenty-Four New Zealand white rabbits with established hypertrophic scar samples were randomly divided into control group and three treatment groups. Artesunate (20 µl/cm2) was injected into the rat's scar of artesunate and combination groups, while fractional CO2 laser (Combo mode, deep energy:10 mJ, super energy: 50 mJ) was applied to rats in fractional CO2 laser and combination groups at week 4 after model establishment. All rabbits underwent a total of 3 sessions of treatment once every 2 weeks. Histological and immunohistochemistry study, Western blot assay, cell viability, ELISA and RT-QPCR were performed at week 10 to observe the aspects of hypertrophic scar sample changes and expression of BMP-7 and Fas in the scar tissues. RESULTS: Compared with control group, hypertrophic scars and the collagen fibers were significantly inhibited after treatment, and higher inhibition was seen in the samples in combination group compared to that in artesunate and fractional CO2 laser groups (P < 0.01). Meanwhile, BMP-7 and Fas expressions were both notably increased in all treatment groups, and upregulation of the two proteins was dominant in combination group (P < 0.01). CONCLUSIONS: Artesunate combined with fractional CO2 laser is effective in hypertrophic scarring in this rabbit model. Our findings can serve as a potential alternative strategy to treatment of hypertrophic scar in clinical practice.


Subject(s)
Burns , Cicatrix, Hypertrophic , Laser Therapy , Lasers, Gas , Animals , Rabbits , Rats , Artesunate/therapeutic use , Bone Morphogenetic Protein 7 , Burns/complications , Burns/therapy , Cicatrix/pathology , Cicatrix, Hypertrophic/pathology , Lasers, Gas/therapeutic use , Treatment Outcome
16.
Adv Sci (Weinh) ; 9(3): e2102634, 2022 01.
Article in English | MEDLINE | ID: mdl-34738731

ABSTRACT

There is an urgent need for developing new immunosuppressive agents due to the toxicity of long-term use of broad immunosuppressive agents after organ transplantation. Comprehensive sample analysis revealed dysregulation of FGL1/LAG-3 and PD-L1/PD-1 immune checkpoints in allogeneic heart transplantation mice and clinical kidney transplant patients. In order to enhance these two immunosuppressive signal axes, a bioengineering strategy is developed to simultaneously display FGL1/PD-L1 (FP) on the surface of small extracellular vesicles (sEVs). Among various cell sources, FP sEVs derived from mesenchymal stem cells (MSCs) not only enriches FGL1/PD-L1 expression but also maintain the immunomodulatory properties of unmodified MSC sEVs. Next, it is confirmed that FGL1 and PD-L1 on sEVs are specifically bound to their receptors, LAG-3 and PD-1 on target cells. Importantly, FP sEVs significantly inhibite T cell activation and proliferation in vitro and a heart allograft model. Furthermore, FP sEVs encapsulated with low-dose FK506 (FP sEVs@FK506) exert stronger effects on inhibiting T cell proliferation, reducing CD8+ T cell density and cytokine production in the spleens and heart grafts, inducing regulatory T cells in lymph nodes, and extending graft survival. Taken together, dual-targeting sEVs have the potential to boost the immune inhibitory signalings in synergy and slow down transplant rejection.


Subject(s)
B7-H1 Antigen/genetics , Extracellular Vesicles/metabolism , Fibrinogen/genetics , Graft Rejection/prevention & control , Immunosuppressive Agents/therapeutic use , Animals , B7-H1 Antigen/metabolism , Disease Models, Animal , Fibrinogen/metabolism , Graft Rejection/genetics , Heart Transplantation , Humans , Immunosuppressive Agents/metabolism , Kidney Transplantation , Mesenchymal Stem Cells , Mice , Transplant Recipients
17.
J Proteomics ; 245: 104309, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34153541

ABSTRACT

The opportunistic fungal pathogen Trichosporon asahii (T. asahii) is an important causal agent of mortality in immunocompromised patients and associated with frequent relapses, even with sufficient antifungal treatment. Investigating the proteomes of initial and recurrent isolates may help to identify within-host adaptive changes. In this study, using tandem mass tag (TMT)-labeling combined with liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) technology, we analyzed the proteomes of two T. asahii strains that were isolated 15 years apart from the same patient who suffered initial and recurrent episodes of systemic disseminated trichosporonosis. A total of 597 differentially expressed proteins were identified. Functional analysis showed that the increased proteins were primarily concentrated on peptide/protein/energy/drug metabolism and translation. Most of the results were determined to be consistent with the findings of phenotypic assays, such as tests for drug susceptibility, temperature growth, biofilm formation, melanization and paromomycin assays. Moreover, we performed multiple reaction monitoring (MRM) mass spectrometry to verify 27 candidate proteins, and the results of this experiment were also highly consistent with the results of the TMT analysis. Therefore, to the best of our knowledge, these data provide the first molecular evidence of how the T. asahii proteome changes related to host-specific adaptation during human infection. SIGNIFICANCE: Systemic infection with Trichosporon asahii (T. asahii) has recently been recognized as an important causal agent of mortality in immunocompromised patients. Although triazole treatment usually works efficiently in the early phase of infection, many patients relapse. Hence, comparative analyses of the proteomics of initial and recurrent isolates may reveal evidence of adaptive changes within the host. Our study demonstrates that the recurrent strain has undergone proteomic changes using tandem mass tag (TMT)-labeling combined with liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Moreover, the results of phenotypic assays, including drug susceptibility, temperature growth, biofilm formation, melanization and paromomycin assays, were highly consistent with the proteomic changes, and multiple reaction monitoring (MRM) verification also showed similar trends to the TMT results. In summary, our study is the first to investigate the adaptation of T. asahii under pressure from antifungal chemotherapy and host immune responses.


Subject(s)
Proteomics , Trichosporon , Antifungal Agents , Basidiomycota , Chromatography, Liquid , Humans , Tandem Mass Spectrometry
18.
Lasers Med Sci ; 36(8): 1625-1632, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34117539

ABSTRACT

595-nm pulsed dye laser and fractional CO2 laser have been demonstrated effective to treat hypertrophic scar. The underlying mechanism may involve transforming growth factor-beta1 (TGFß1) and proliferating cell nuclear antigen (PCNA), but remains to be clarified. Our study was performed to investigate how 595-nm pulsed dye laser combined with fractional CO2 laser treats hypertrophic scars in a rabbit model through regulating the expression of TGFß1 and PCNA. Twenty-four New Zealand white rabbits were randomly divided into control group, pulsed dye laser group, fractional CO2 laser group, and pulsed dye laser + fractional CO2 laser (combination) group. Surgical wounds were made and allowed to grow into hypertrophic scars at day 28. Next, 595-nm pulsed dye laser (fluence: 15 J/cm2; square: 7 mm; pulse duration: 10 ms) was used in pulsed dye laser and combination group, while fractional CO2 laser (combo mode, deep energy: 12.5 mJ; super energy: 90 mJ) in fractional CO2 laser and combination groups, once every 4 weeks for 3 times. The appearance and thickness of hypertrophic scar samples were measured with hematoxylin-eosin and Van Gieson's straining. The expressions of TGFß1 and PCNA were evaluated by immunohistochemical and western blot analysis. A significant improvement was noted in the thickness, size, hardness, and histopathology of hypertrophic scar samples after laser treatment, especially in combination group. Scar Elevation Index (SEI), fiber density (NA), and collagen fiber content (AA) decreased most significantly in combination group (2.10 ± 0.14; 2506 ± 383.00; 22.98 ± 2.80%) compared to 595-nm pulsed dye laser group (3.35 ± 0.28; 4857 ± 209.40; 42.83 ± 1.71%) and fractional CO2 laser group (2.60 ± 0.25; 3995 ± 224.20; 38.33 ± 3.01%) (P < 0.001). Furthermore, TGFß1 and PCNA expressions were more suppressed in combination group (8.78 ± 1.03; 7.81 ± 1.51) than in 595-nm pulsed dye laser (14.91 ± 1.68; 15.73 ± 2.53) and fractional CO2 laser alone group (15.96 ± 1.56; 16.13 ± 1.72) (P < 0.001). The combination of 595-nm pulsed dye laser with fractional CO2 laser can improve the morphology and histology of hypertrophic scars in a rabbit model through inhibiting the expression of TGFß1 and PCNA protein. Our findings can pave the way for new clinical treatment strategies for hypertrophic scars.


Subject(s)
Cicatrix, Hypertrophic , Lasers, Dye , Lasers, Gas , Animals , Rabbits , Carbon Dioxide , Cicatrix , Cicatrix, Hypertrophic/pathology , Cicatrix, Hypertrophic/radiotherapy , Cicatrix, Hypertrophic/surgery , Lasers, Dye/therapeutic use , Lasers, Gas/therapeutic use , Proliferating Cell Nuclear Antigen , Treatment Outcome
19.
Mycopathologia ; 186(3): 355-365, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33877524

ABSTRACT

Trichosporon asahii (T. asahii) is a clinically important opportunistic pathogenic fungus capable of causing systemic lethal infection in immunosuppressive and immunodeficient hosts. However, the mechanism of the host immune response upon T. asahii infection has not been elucidated. Recent evidence has shown that long noncoding RNAs (lncRNAs) play key roles in regulating the immune response to resist microbial infections. In this study, we analyzed the expression profiles of lncRNAs at 12 and 24 h post-infection (hpi) in THP-1 cells infected with T. asahii using RNA sequencing (RNA-Seq). A total of 64 and 160 lncRNAs displayed significant differentially expressed (DE) at 12 h and 24 hpi, respectively. Among these lncRNAs, 18 lncRNAs were continuous DE at two time points. The DE of eight candidate lncRNAs were verified by real time quantitative polymerase chain reaction (RT-qPCR). Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to analyze the cis-target genes of 18 DE lncRNAs. The results showed that they were enriched in signaling pathways related to the host immune response, indicating that these lncRNAs might play important roles in fungi-host interactions. Finally, we explored the function of lncRNA NEAT1 and found that the expression of TNF-α and IL-1ß declined after NEAT1 knockdown in T. asahii-infected THP-1 cells. To our knowledge, this is the first report of a expression analysis of lncRNAs in macrophages infected with T. asahii. Our study helps to elucidate the role of lncRNAs in the host immune response to early infection by T. asahii.


Subject(s)
Macrophages , RNA, Long Noncoding , Basidiomycota , Gene Expression Profiling , RNA, Messenger , Sequence Analysis, RNA
20.
Mil Med Res ; 8(1): 19, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33750466

ABSTRACT

BACKGROUND: Invasive Trichosporon asahii (T. asahii) infection frequently occurs with a high mortality in immunodeficient hosts, but the pathogenesis of T. asahii infection remains elusive. Circular RNAs (circRNAs) are a type of endogenous noncoding RNA that participate in various disease processes. However, the mechanism of circRNAs in T. asahii infection remains completely unknown. METHODS: RNA sequencing (RNA-seq) was performed to analyze the expression profiles of circRNAs, microRNAs (miRNAs), and mRNAs in THP-1 cells infected with T. asahii or uninfected samples. Some of the RNA-seq results were verified by RT-qPCR. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to analyze the differentially expressed mRNAs. A circRNA-miRNA-mRNA network was constructed and verified by dual-luciferase reporter assay and overexpression experiments. RESULTS: A total of 46 circRNAs, 412 mRNAs and 47 miRNAs were differentially expressed at 12 h after T. asahii infection. GO and KEGG analyses showed that the differentially expressed mRNAs were primarily linked to the leukocyte migration involved in the inflammatory response, the Toll-like receptor signaling pathway, and the TNF signaling pathway. A competing endogenous RNA (ceRNA) network was constructed with 5 differentially expressed circRNAs, 5 differentially expressed miRNAs and 42 differentially expressed mRNAs. Among them, hsa_circ_0065336 was found to indirectly regulate PTPN11 expression by sponging miR-505-3p. CONCLUSIONS: These data revealed a comprehensive circRNA-associated ceRNA network during T. asahii infection, thus providing new insights into the pathogenesis of the T. asahii-host interactions.


Subject(s)
Basidiomycota/drug effects , MicroRNAs/pharmacology , RNA, Circular/pharmacology , RNA, Messenger/pharmacology , Trichosporonosis/therapy , Basidiomycota/pathogenicity , Humans , MicroRNAs/therapeutic use , RNA, Circular/therapeutic use , RNA, Messenger/therapeutic use , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...