Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(19): 30005-30019, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37710553

ABSTRACT

An optomechanical system is a promising platform to connect different "notes" of quantum networks. Therefore, entanglements generated from it is also of great importance. In this paper, the parameter dependence of optomechanical and optical-optical entanglements generated from the double-longitudinal-mode cavity optomechanical system are discussed and two quadrapartite entanglement generation schemes based on such a system are proposed. Furthermore, 2N and 4N-partite entangled states of optical modes can be obtained by coupling N cavities that used in the above two schemes with N-1 beamsplitters, respectively. Certain ladder or linear entanglement structures are included in the finally obtained entangled state, which are important for its application in one-way quantum computing.

2.
Opt Express ; 31(7): 11775-11787, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37155804

ABSTRACT

Multipartite Einstein-Podolsky-Rosen (EPR) steering has been widely studied, for realizing safer quantum communication. The steering properties of six spatially separated beams from the four-wave-mixing process with a spatially structured pump are investigated. Behaviors of all (1+i)/(i+1)-mode (i=1,2,3) steerings are understandable, if the role of the corresponding relative interaction strengths are taken into account. Moreover, stronger collective multipartite steerings including five modes can be obtained in our scheme, which has potential applications in ultra-secure multiuser quantum networks when the issue of trust is critical. By further discussing about all monogamy relations, it is noticed that the type-IV monogamy relations, which are naturally included in our model, are conditionally satisfied. Matrix representation is used to express the steerings for the first time, which is very useful to understand the monogamy relations intuitively. Different steering properties obtained in this compact phase-insensitive scheme have potential applications for different kinds of quantum communication tasks.

3.
Opt Express ; 31(5): 7535-7544, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36859882

ABSTRACT

A large-scale continuous variable (CV) cluster state is necessary in quantum information processing based on measurement-based quantum computing (MBQC). Specially, generating a large-scale CV cluster state multiplexed in a time domain is easier to implement and has strong scalability in experiment. Here one-dimensional (1D) large-scale dual-rail CV cluster states multiplexed both in time and frequency domains are parallelly generated, which can be further extended to a three-dimensional (3D) CV cluster state by combining two time-delay nondegenerate optical parametric amplification systems with beam-splitters. It is shown that the number of parallel arrays depends on the corresponding frequency comb lines, the partite number of each array can be very large (million), and the scale of the 3D cluster state can be ultra-large. In addition, the concrete quantum computing schemes of applying the generated 1D and 3D cluster states are also demonstrated. Our schemes may pave the way for fault-tolerant and topologically protected MBQC in hybrid domains, by further combining with efficient coding and quantum error correction.

4.
Opt Express ; 28(16): 23628-23639, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32752356

ABSTRACT

Squeezing operation is critical in Gaussian quantum information. A high-fidelity heralded squeezing gate was recently realized using a noiseless linear amplifier with moderate ancillary squeezing. Here we analyze the heralded scheme based on squeezing [J. Zhao, Nat. Photonics, 14, 306 (2020)] and find that its fidelity depends heavily on the purity of auxiliary squeezing, and even the fidelity with a 6 dB pure squeezed state is better than with a 15 dB thermal squeezed state. On this basis, we construct a new heralded squeezing gate based on teleportation, which can overcome the shortcomings of the heralded scheme based on squeezing and is immune to the purity of input squeezing. It can better use the current best available squeezing (15 dB) to realize a perfect squeezing gate for fault-tolerant continuous-variable quantum computation. This scheme is promising to realize other single-mode Gaussian operations and non-classical state squeezing operations.

5.
Opt Express ; 17(12): 9851-7, 2009 Jun 08.
Article in English | MEDLINE | ID: mdl-19506635

ABSTRACT

The bright two-color tripartite entanglement is investigated in the process of type II second harmonic generation (SHG) operating above threshold. The two pump fields and the second harmonic field are proved to be entangled, and the dependence of the entanglement degree on pump parametersigma and normalized frequency Omega is also analyzed.


Subject(s)
Color , Colorimetry/methods , Light , Models, Theoretical , Scattering, Radiation , Computer Simulation
6.
Opt Lett ; 32(15): 2218-20, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17671589

ABSTRACT

We demonstrate experimentally a protocol of transferring nonclassical quantum properties using two pairs of quantum-correlated twin beams in the continuous variable regime. The intensity quantum correlation from one twin beam is transferred to two initially independent idler beams with the help of a displacement transformation. It makes two originally independent beams exhibit an intensity quantum correlation of 0.8 dB below shot-noise level.

7.
Opt Lett ; 31(11): 1735-7, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16688278

ABSTRACT

Widely frequency tunable bright sub-Poissonian field preparation has been experimentally achieved with quantum-correlated twin beams in the continuously variable regime. The noise of the sub-Poissonian field is reduced to more than 2 dB below the shot-noise level throughout the entire wavelength-tunable range of 7.4 nm. A maximum noise reduction of 45% (2.6 dB) is observed. The statistical distribution of a sub-Poissonian field is also obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...