Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 7(4): 2817-26, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25569714

ABSTRACT

Flexible and lightweight graphene nanosheet (GN)/waterborne polyurethane (WPU) composites which exhibit high electrical conductivity and electromagnetic shielding performance were prepared. Covalently modifying GNs with aminoethyl methacrylate (AEMA; AEMA-GNs) through free radical polymerization effectively inhibited the restacking and aggregation of the GNs because of the -NH3(+) functional groups grafted on the AEMA-GNs. Moreover, the AEMA-GNs exhibited high compatibility with a WPU matrix with grafted sulfonated functional groups because of the electrostatic attraction, which caused the AEMA-GNs to homogeneously disperse in the WPU matrix. This homogeneous distribution enabled the GNs to form electrically conductive networks. Furthermore, AEMA-GNs with different amounts of AEMA segments were introduced into the WPU matrix, and the effects of the surface chemistry of the GNs on the electrical conductivity and EMI shielding performance of composites were investigated. AEMA-GN/WPU composites with a GN loading of 5 vol % exhibited remarkable electrical conductivity (approximately 43.64 S/m) and EMI shielding effectiveness (38 dB) over the frequency of 8.2 to 12.4 GHz.

2.
ACS Appl Mater Interfaces ; 6(13): 10667-78, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24921939

ABSTRACT

In this study, we developed a simple and powerful method to fabricate flexible and lightweight graphene-based composites that provide high electromagnetic interference (EMI) shielding performance. Electrospun waterborne polyurethane (WPU) that featured sulfonate functional groups was used as the polymer matrix, which was light and flexible. First, graphene oxide (GO)/WPU composites were prepared through layer-by-layer (L-b-L) assembly of two oppositely charged suspensions of GO, the cationic surfactant (didodecyldimethylammonium bromide, DDAB)-adsorbed GO and intrinsic negatively charged GO, depositing on the negatively charged WPU fibers. After the L-b-L assembly cycles, the GO bilayers wrapped the WPU fiber matrix completely and revealed fine connections guided by the electrospun WPU fibers. Then, we used hydroiodic acid (HI) to obtain highly reduced GO (r-GO)/WPU composites, which exhibited substantially enhanced electrical conductivity (approximately 16.8 S/m) and, moreover, showed a high EMI-shielding effectiveness (approximately 34 dB) over the frequency range from 8.2 to 12.4 GHz.

3.
Ultrasonics ; 44 Suppl 1: e793-800, 2006 Dec 22.
Article in English | MEDLINE | ID: mdl-16806347

ABSTRACT

It is known that microscopic spherulite growth plays an important role in macroscopical properties such as elastic moduli of some semicrystalline polymers. Ultrasonic spectroscopy can be used to quantitatively determine the role of spherulites. As a first approximation, spherulitic polymers are modeled as a material with spherical inclusions in an amorphous matrix. This two-phase composite model is then physically realized by embedding glass micro-spheres in an epoxy. The dynamic mechanical properties of these composites are experimentally determined by measuring their acoustic properties such as phase velocity and attenuation. Acoustic scattering theories are then applied to this model to test their predictive capabilities for the real composite's mechanical properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...