Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 476: 135050, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38954852

ABSTRACT

Spent lithium-ion batteries (LIBs) have emerged as a major source of waste due to their low recovery rate. The physical disposal of spent LIBs can lead to the leaching of their contents into the surrounding environment. While it is widely agreed that hazardous substances such as nickel and cobalt in the leachate can pose a threat to the environment and human health, the overall composition and toxicity of LIB leachate remain unclear. In this study, a chemical analysis of leachate from spent LIBs was conducted to identify its primary constituents. The ecotoxicological parameters of the model organism, rotifer Brachionus asplanchnoidis, were assessed to elucidate the toxicity of the LIB leachate. Subsequent experiments elucidated the impacts of the LIB leachate and its representative components on the malondialdehyde (MDA) level, antioxidant capacity, and enzyme activity of B. asplanchnoidis. The results indicate that both the LIB leachate and its components are harmful to individual rotifers due to the adverse effects of stress-induced disturbances in biochemical indicators, posing a threat to population development. The intensified poisoning phenomenon under combined stress suggests the presence of complex synergistic effects among the components of LIB leachate. Due to the likely environmental and biological hazards, LIBs should be strictly managed after disposal. Additionally, more economical and eco-friendly recycling and treatment technologies need to be developed and commercialized.

SELECTION OF CITATIONS
SEARCH DETAIL
...