Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Artif Intell Med ; 150: 102805, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38553169

ABSTRACT

Predicting drug-disease associations can contribute to discovering new therapeutic potentials of drugs, and providing important association information for new drug research and development. Many existing drug-disease association prediction methods have not distinguished relevant background information for the same drug targeted to different diseases. Therefore, this paper proposes a drug-disease association prediction model based on graph convolutional network and graph attention network (GCNGAT) to reposition marketed drugs under the distinguishment of background information. Firstly, in order to obtain initial drug-disease information, a drug-disease heterogeneous graph structure is constructed based on all known drug-disease associations. Secondly, based on the heterogeneous graph structure, the corresponding subgraphs of each group of drug-disease association pairs are extracted to distinguish different background information for the same drug from different diseases. Finally, a model combining Graph neural network with global Average pooling (GnnAp) is designed to predict potential drug-disease associations by learning drug-disease interaction feature representations. The experimental results show that adding subgraph extraction can effectively improve the prediction performance of the model, and the graph representation learning module can fully extract the deep features of drug-disease. Using the 5-fold cross-validation, the proposed model (GCNGAT) achieves AUC (Area Under the receiver operating characteristic Curve) values of 0.9182 and 0.9417 on the PREDICT dataset and CDataset dataset, respectively. Compared with other predictors on the same dataset (PREDICT dataset), GCNGAT outperforms the existing best-performing model (PSGCN), with a 1.58% increase in the AUC value. It is anticipated that this model can provide experimental reference for drug repositioning and further promote the drug research and development process.


Subject(s)
Drug Repositioning , Learning , Neural Networks, Computer , ROC Curve
2.
Cancers (Basel) ; 15(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37760413

ABSTRACT

As a complication of malignant tumors, brain metastasis (BM) seriously threatens patients' survival and quality of life. Accurate detection of BM before determining radiation therapy plans is a paramount task. Due to the small size and heterogeneous number of BMs, their manual diagnosis faces enormous challenges. Thus, MRI-based artificial intelligence-assisted BM diagnosis is significant. Most of the existing deep learning (DL) methods for automatic BM detection try to ensure a good trade-off between precision and recall. However, due to the objective factors of the models, higher recall is often accompanied by higher number of false positive results. In real clinical auxiliary diagnosis, radiation oncologists are required to spend much effort to review these false positive results. In order to reduce false positive results while retaining high accuracy, a modified YOLOv5 algorithm is proposed in this paper. First, in order to focus on the important channels of the feature map, we add a convolutional block attention model to the neck structure. Furthermore, an additional prediction head is introduced for detecting small-size BMs. Finally, to distinguish between cerebral vessels and small-size BMs, a Swin transformer block is embedded into the smallest prediction head. With the introduction of the F2-score index to determine the most appropriate confidence threshold, the proposed method achieves a precision of 0.612 and recall of 0.904. Compared with existing methods, our proposed method shows superior performance with fewer false positive results. It is anticipated that the proposed method could reduce the workload of radiation oncologists in real clinical auxiliary diagnosis.

3.
IEEE J Biomed Health Inform ; 27(10): 5177-5186, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37494154

ABSTRACT

Circular RNAs (circRNAs) are specifically and abnormally expressed in disease tissues, and thus can be used as biomarkers to diagnose relevant diseases. Predicting circRNA-disease associations will provide essential clues to reveal molecular mechanisms of disease development and discover novel therapeutic targets. Existing algorithms ignore the heterogeneous biological association information related to microRNAs (miRNAs). Based on a heterogeneous graph embedding model, a novel circRNA-disease association prediction method called HGECDA is developed in this paper. The heterogeneous graph network containing circRNA-miRNA-disease association information is first constructed. To sample the heterogeneous information, the meta-path-based random walk that can capture the relevance between various types of nodes is employed. Then, the path embedding model based on skip-gram and random negative sampling is built to acquire the initial feature vectors of circRNAs and diseases. Finally, the CosMulformer model with linearized self-attention and Hadamard product is designed to obtain the circRNA-disease interaction vectors and conduct the prediction task. Experimental results demonstrate the critical role of miRNA in enriching the information of the feature space, the effectiveness of the CosMulformer model in picking out deep local interaction features, and the feasibility of the Hadamard product chosen as the integration pattern in the CosMulformer model. Compared with existing state-of-the-art methods on the same dataset, HGECDA performs better than the other seven algorithms. Moreover, the case studies about breast cancer and colorectal cancer demonstrate the practical value of HGECDA in predicting potential circRNA-disease associations.

4.
Comput Biol Chem ; 104: 107853, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36990028

ABSTRACT

Amyloid fibrils formed by the mis-aggregation of amyloid proteins can lead to neuronal degenerations in the Alzheimer's disease. Predicting amyloid proteins not only contributes to understanding physicochemical properties and formation mechanism of amyloid proteins, but also has significant implications in the amyloid disease treatment and the development of a new purpose for amyloid materials. In this study, an ensemble learning model with sequence-derived features, ECAmyloid, is proposed to identify amyloids. The sequence-derived features including Pseudo Position Specificity Score Matrix (Pse-PSSM), Split Amino Acid Composition (SAAC), Solvent Accessibility (SA), and Secondary Structure Information (SSI) are employed to incorporate sequence composition, evolutionary and structural information. The individual learners of the ensemble learning model are selected by an increment classifier selection strategy. The final prediction results are determined by voting of prediction results of multiple individual learners. In view of the imbalanced benchmark dataset, the Synthetic Minority Over-sampling Technique (SMOTE) is adopted to generate positive samples. To eliminate irrelevant features and redundant features, correlation-based feature subset (CFS) selection combined with a heuristic search strategy is performed to obtain the optimal feature subset. Experimental results indicate that the ensemble classifier achieves an accuracy of 98.29%, a sensitivity of 0.992, a specificity of 0.974 on the training dataset using the 10-fold cross validation, far higher than the results obtained by its individual learners. Compared with the original feature set, the accuracy, sensitivity, specificity, MCC, F1-score, G-Mean of the ensemble method trained by the optimal feature subset are improved by 1.05%, 0.012, 0.01, 0.021, 0.011 and 0.011, respectively. Moreover, the comparison results with existing methods on two same independent test datasets demonstrate that the proposed method is an effective and promising predictor for large-scale determination of amyloid proteins. The data and code used to develop ECAmyloid has been shared to Github, and can be freely downloaded at https://github.com/KOALA-L/ECAmyloid.git.


Subject(s)
Amino Acids , Amyloidogenic Proteins , Amino Acids/chemistry , Machine Learning , Algorithms
5.
Biomolecules ; 12(12)2022 12 12.
Article in English | MEDLINE | ID: mdl-36551282

ABSTRACT

By denaturing proteins and promoting the formation of multiprotein complexes, protein phosphorylation has important effects on the activity of protein functional molecules and cell signaling. The regulation of protein phosphorylation allows microbes to respond rapidly and reversibly to specific environmental stimuli or niches, which is closely related to the molecular mechanisms of bacterial drug resistance. Accurate prediction of phosphorylation sites (p-site) of prokaryotes can contribute to addressing bacterial resistance and providing new perspectives for developing novel antibacterial drugs. Most existing studies focus on human phosphorylation sites, while tools targeting phosphorylation site identification of prokaryotic proteins are still relatively scarce. This study designs a capsule network-based prediction technique for p-site in prokaryotes. To address the poor scalability and unreliability of dynamic routing processes in the output space of capsule networks, a more reliable way is introduced to learn the consistency between capsules. We incorporate a self-attention mechanism into the routing algorithm to capture the global information of the capsule, reducing the computational effort while enriching the representation capability of the capsule. Aiming at the weak robustness of the model, EcapsP improves the prediction accuracy and stability by introducing shortcuts and unconditional reconfiguration. In addition, the study compares and analyzes the prediction performance based on word vectors, physicochemical properties, and mixing characteristics in predicting serine (Ser/S), threonine (Thr/T), and tyrosine (Tyr/Y) p-site. The comprehensive experimental results show that the accuracy of the developed technique is close to 70% for the identification of the three phosphorylation sites in prokaryotes. Importantly, in side-by-side comparisons with other state-of-the-art predictors, our method improves the Matthews correlation coefficient (MCC) by approximately 7%. The results demonstrate the superiority of EcapsP in terms of high performance and reliability.


Subject(s)
Prokaryotic Cells , Proteins , Humans , Phosphorylation , Reproducibility of Results , Proteins/metabolism , Tyrosine/metabolism
6.
Comput Biol Med ; 151(Pt A): 106289, 2022 12.
Article in English | MEDLINE | ID: mdl-36401973

ABSTRACT

As a non-coding RNA molecule with closed-loop structure, circular RNA (circRNA) is tissue-specific and cell-specific in expression pattern. It regulates disease development by modulating the expression of disease-related genes. Therefore, exploring the circRNA-disease relationship can reveal the molecular mechanism of disease pathogenesis. Biological experiments for detecting circRNA-disease associations are time-consuming and laborious. Constrained by the sparsity of known circRNA-disease associations, existing algorithms cannot obtain relatively complete structural information to represent features accurately. To this end, this paper proposes a new predictor, VGAERF, combining Variational Graph Auto-Encoder (VGAE) and Random Forest (RF). Firstly, circRNA homogeneous graph structure and disease homogeneous graph structure are constructed by Gaussian interaction profile (GIP) kernel similarity, semantic similarity, and known circRNA-disease associations. VGAEs with the same structure are employed to extract the higher-order features by the encoding and decoding of input graph structures. To further increase the completeness of the network structure information, the deep features acquired from the two VGAEs are summed, and then train the RF with sparse data processing capability to perform the prediction task. On the independent test set, the Area Under ROC Curve (AUC), accuracy, and Area Under PR Curve (AUPR) of the proposed method reach up to 0.9803, 0.9345, and 0.9894, respectively. On the same dataset, the AUC, accuracy, and AUPR of VGAERF are 2.09%, 5.93%, and 1.86% higher than the best-performing method (AEDNN). It is anticipated that VGAERF will provide significant information to decipher the molecular mechanisms of circRNA-disease associations, and promote the diagnosis of circRNA-related diseases.


Subject(s)
Labor, Obstetric , RNA, Circular , Pregnancy , Female , Humans , RNA, Circular/genetics , Algorithms , Area Under Curve , Semantics
7.
Biophys Chem ; 286: 106822, 2022 07.
Article in English | MEDLINE | ID: mdl-35605495

ABSTRACT

Enhancers are non-coding DAN fragments that play key roles in gene regulations and can promote the transcription of structural genes, thereby affecting the expression of structural protein catalytic enzymes and regulatory proteins. Accurate identification of enhancers helps to understand the transcription of structural genes and the development of human tumorigenesis, diagnosis and treatment. The enhancer sequences have high position variations and dispersions, and the identification of enhancers is more challenging than other genetic factors. Based on word embedding and sequence generative adversarial networks, a deep learning framework for enhancer identification is proposed. Firstly, considering the small number of sequences in the benchmark dataset, RankGAN is used to amplify the dataset size while maintaining the data characteristics. Then, in view of the similarity between DNA sequence and natural language, DNA sequence is regarded as a sentence composed of multiple "words", and the word embedding technology FastText is applied to transform it into a numerical matrix. To extract the dependencies and highly abstract features of nucleotides in DNA sequences, a Long Short-Term Memory Convolutional Neural network (LSTM-CNN) is constructed to perform the identification task. On the independent test set, the accuracy and Matthew's correlation coefficient (MCC) for enhancer prediction are 0.7525 and 0.5051, respectively. For the enhancer type prediction, the accuracy and MCC of this method are 0.6972 and 0.3954, respectively. Compared with existing methods, this method achieves more satisfactory results for the prediction of enhancers and their types. This study will further enrich the application of natural language processing in bioinformatics.


Subject(s)
Deep Learning , Computational Biology/methods , Humans , Neural Networks, Computer
8.
Infect Ecol Epidemiol ; 11(1): 1993535, 2021.
Article in English | MEDLINE | ID: mdl-34745449

ABSTRACT

BACKGROUND: The COVID-19 pandemic presents great challenges on transmission prevention, and rapid diagnosis is essential to reduce the disease spread. Various diagnostic methods are available to identify an ongoing infection by nasopharyngeal (NPH) swab sampling. However, the procedure requires handling by health care professionals, and therefore limits the application in household and community settings. OBJECTIVES: In this study, we aimed to determine if the detection of SARS-CoV-2 can be performed alternatively on saliva specimens by rapid antigen test. STUDY DESIGN: Saliva and NPH specimens were collected from 44 patients with confirmed COVID-19. To assess the diagnostic accuracy of point-of-care SARS-CoV-2 rapid antigen test on saliva specimens, we compared the performance of four test products. RESULTS: RT-qPCR was performed and NPH and saliva sampling had similar Ct values, which associated with disease duration. All four antigen tests showed similar trend in detecting SARS-CoV-2 in saliva, but with variation in the ability to detect positive cases. The rapid antigen test with the best performance could detect up to 67% of the positive cases with Ct values lower than 25, and disease duration shorter than 10 days. CONCLUSION: Our study therefore supports saliva testing as an alternative diagnostic procedure to NPH testing, and that rapid antigen test on saliva provides a potential complement to PCR test to meet increasing screening demand.

9.
Int J Mol Sci ; 22(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808317

ABSTRACT

As critical components of DNA, enhancers can efficiently and specifically manipulate the spatial and temporal regulation of gene transcription. Malfunction or dysregulation of enhancers is implicated in a slew of human pathology. Therefore, identifying enhancers and their strength may provide insights into the molecular mechanisms of gene transcription and facilitate the discovery of candidate drug targets. In this paper, a new enhancer and its strength predictor, iEnhancer-GAN, is proposed based on a deep learning framework in combination with the word embedding and sequence generative adversarial net (Seq-GAN). Considering the relatively small training dataset, the Seq-GAN is designed to generate artificial sequences. Given that each functional element in DNA sequences is analogous to a "word" in linguistics, the word segmentation methods are proposed to divide DNA sequences into "words", and the skip-gram model is employed to transform the "words" into digital vectors. In view of the powerful ability to extract high-level abstraction features, a convolutional neural network (CNN) architecture is constructed to perform the identification tasks, and the word vectors of DNA sequences are vertically concatenated to form the embedding matrices as the input of the CNN. Experimental results demonstrate the effectiveness of the Seq-GAN to expand the training dataset, the possibility of applying word segmentation methods to extract "words" from DNA sequences, the feasibility of implementing the skip-gram model to encode DNA sequences, and the powerful prediction ability of the CNN. Compared with other state-of-the-art methods on the training dataset and independent test dataset, the proposed method achieves a significantly improved overall performance. It is anticipated that the proposed method has a certain promotion effect on enhancer related fields.


Subject(s)
DNA/genetics , Enhancer Elements, Genetic/genetics , Image Processing, Computer-Assisted/methods , Algorithms , Deep Learning , Models, Theoretical , Neural Networks, Computer , Regulatory Sequences, Nucleic Acid/genetics , Sequence Analysis, DNA/methods
10.
Sci Rep ; 11(1): 844, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436981

ABSTRACT

The DNA replication influences the inheritance of genetic information in the DNA life cycle. As the distribution of replication origins (ORIs) is the major determinant to precisely regulate the replication process, the correct identification of ORIs is significant in giving an insightful understanding of DNA replication mechanisms and the regulatory mechanisms of genetic expressions. For eukaryotes in particular, multiple ORIs exist in each of their gene sequences to complete the replication in a reasonable period of time. To simplify the identification process of eukaryote's ORIs, most of existing methods are developed by traditional machine learning algorithms, and target to the gene sequences with a fixed length. Consequently, the identification results are not satisfying, i.e. there is still great room for improvement. To break through the limitations in previous studies, this paper develops sequence segmentation methods, and employs the word embedding technique, 'Word2vec', to convert gene sequences into word vectors, thereby grasping the inner correlations of gene sequences with different lengths. Then, a deep learning framework to perform the ORI identification task is constructed by a convolutional neural network with an embedding layer. On the basis of the analysis of similarity reduction dimensionality diagram, Word2vec can effectively transform the inner relationship among words into numerical feature. For four species in this study, the best models are obtained with the overall accuracy of 0.975, 0.765, 0.885, 0.967, the Matthew's correlation coefficient of 0.940, 0.530, 0.771, 0.934, and the AUC of 0.975, 0.800, 0.888, 0.981, which indicate that the proposed predictor has a stable ability and provide a high confidence coefficient to classify both of ORIs and non-ORIs. Compared with state-of-the-art methods, the proposed predictor can achieve ORI identification with significant improvement. It is therefore reasonable to anticipate that the proposed method will make a useful high throughput tool for genome analysis.


Subject(s)
DNA Replication , Deep Learning , Kluyveromyces/genetics , Replication Origin , Saccharomyces cerevisiae/genetics , Saccharomycetales/genetics , Schizosaccharomyces/genetics , Algorithms , Databases, Genetic , Neural Networks, Computer , Transcription, Genetic
11.
Infect Ecol Epidemiol ; 10(1): 1821513, 2020 Sep 20.
Article in English | MEDLINE | ID: mdl-33062217

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has created a global health- and economic crisis. Detection of antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes COVID-19 by serological methods is important to diagnose a current or resolved infection. In this study, we applied a rapid COVID-19 IgM/IgG antibody test and performed serology assessment of antibody response to SARS-CoV-2. In PCR-confirmed COVID-19 patients (n = 45), the total antibody detection rate is 92% in hospitalized patients and 79% in non-hospitalized patients. The total IgM and IgG detection is 63% in patients with <2 weeks from disease onset; 85% in non-hospitalized patients with >2 weeks disease duration; and 91% in hospitalized patients with >2 weeks disease duration. We also compared different blood sample types and suggest a higher sensitivity by serum/plasma over whole blood. Test specificity was determined to be 97% on 69 sera/plasma samples collected between 2016-2018. Our study provides a comprehensive validation of the rapid COVID-19 IgM/IgG serology test, and mapped antibody detection patterns in association with disease progress and hospitalization. Our results support that the rapid COVID-19 IgM/IgG test may be applied to assess the COVID-19 status both at the individual and at a population level.

12.
IEEE/ACM Trans Comput Biol Bioinform ; 16(6): 2046-2056, 2019.
Article in English | MEDLINE | ID: mdl-29993986

ABSTRACT

The function of a flavoprotein is determined to a great extent by the binding sites on its surface that interacts with flavin adenine dinucleotide (FAD). Malfunction or dysregulation of FAD binding leads to a series of diseases. Therefore, accurately identifying FAD interacting residues (FIRs) provides insights into the molecular mechanisms of flavoprotein-related biological processes and disease progression. In this paper, a new computational method is proposed for identifying FIRs from protein sequences. Various sequence-derived discriminative features are explored. We analyze the distinctions of these features between FIRs and non-FIRs. We also investigate the predictive capabilities of both individual features and combinations of features. A relief algorithm followed by incremental feature selection (relief-IFS) is then adopted to search the optimal features. Finally, a random forest (RF) module is used to predict FIRs based on the optimal features. Using a 5-fold cross-validation test, the proposed method performs well, with a sensitivity of 0.847, a specificity of 0.933, an accuracy of 0.890, and a Matthews correlation coefficient (MCC) of 0.782, thereby outperforming previous methods. These results indicate that our method is relatively successful at predicting FIRs.


Subject(s)
Binding Sites , Computational Biology/methods , Flavin-Adenine Dinucleotide/chemistry , Algorithms , Amino Acids/chemistry , Bayes Theorem , Computer Simulation , Databases, Protein , Flavin Mononucleotide/chemistry , Humans , Ligands , Protein Binding , Proteins/chemistry , Reproducibility of Results , Sensitivity and Specificity , Solvents/chemistry
13.
Sci Rep ; 8(1): 14062, 2018 09 14.
Article in English | MEDLINE | ID: mdl-30218091

ABSTRACT

Anti-angiogenic peptides perform distinct physiological functions and potential therapies for angiogenesis-related diseases. Accurate identification of anti-angiogenic peptides may provide significant clues to understand the essential angiogenic homeostasis within tissues and develop antineoplastic therapies. In this study, an ensemble predictor is proposed for anti-angiogenic peptide prediction by fusing an individual classifier with the best sensitivity and another individual one with the best specificity. We investigate predictive capabilities of various feature spaces with respect to the corresponding optimal individual classifiers and ensemble classifiers. The accuracy and Matthew's Correlation Coefficient (MCC) of the ensemble classifier trained by Bi-profile Bayes (BpB) features are 0.822 and 0.649, respectively, which represents the highest prediction results among the investigated prediction models. Discriminative features are obtained from BpB using the Relief algorithm followed by the Incremental Feature Selection (IFS) method. The sensitivity, specificity, accuracy, and MCC of the ensemble classifier trained by the discriminative features reach up to 0.776, 0.888, 0.832, and 0.668, respectively. Experimental results indicate that the proposed method is far superior to the previous study for anti-angiogenic peptide prediction.


Subject(s)
Computational Biology/methods , Neovascularization, Physiologic/drug effects , Peptides/pharmacology , Algorithms , Benchmarking
14.
Front Cell Neurosci ; 12: 240, 2018.
Article in English | MEDLINE | ID: mdl-30150924

ABSTRACT

Cortical mechanisms that regulate acute or chronic pain remain poorly understood. The prefrontal cortex (PFC) exerts crucial control of sensory and affective behaviors. Recent studies show that activation of the projections from the PFC to the nucleus accumbens (NAc), an important pathway in the brain's reward circuitry, can produce inhibition of both sensory and affective components of pain. However, it is unclear whether this circuit is endogenously engaged in pain regulation. To answer this question, we disrupted this circuit using an optogenetic strategy. We expressed halorhodopsin in pyramidal neurons from the PFC, and then selectively inhibited the axonal projection from these neurons to neurons in the NAc core. Our results reveal that inhibition of the PFC or its projection to the NAc, heightens both sensory and affective symptoms of acute pain in naïve rats. Inhibition of this corticostriatal pathway also increased nociceptive sensitivity and the aversive response in a chronic neuropathic pain model. Finally, corticostriatal inhibition resulted in a similar aversive phenotype as chronic pain. These results strongly suggest that the projection from the PFC to the NAc plays an important role in endogenous pain regulation, and its impairment contributes to the pathology of chronic pain.

15.
Rev Sci Instrum ; 89(4): 045005, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29716349

ABSTRACT

In this paper, a metallic-packaging fiber Bragg grating temperature sensor characterized by a strain insensitive design is demonstrated. The sensor is fabricated by the one-step ultrasonic welding technique using type-II fiber Bragg grating combined with an aluminum alloy substrate. Finite element analysis is used to perform theoretical evaluation. The result of the experiment illustrates that the metallic-packaging temperature sensor is insensitive to longitudinal strain. The sensor's temperature sensitivity is 36 pm/°C over the range of 50-110 °C, with the correlation coefficient (R2) being 0.999. The sensor's temporal response is 40 s at a sudden temperature change from 21 °C to 100 °C. The proposed sensor can be applied on reliable and precise temperature measurement.

16.
Biomed Res Int ; 2018: 9364182, 2018.
Article in English | MEDLINE | ID: mdl-29568772

ABSTRACT

Cancerlectins have an inhibitory effect on the growth of cancer cells and are currently being employed as therapeutic agents. The accurate identification of the cancerlectins should provide insight into the molecular mechanisms of cancers. In this study, a new computational method based on the RF (Random Forest) algorithm is proposed for further improving the performance of identifying cancerlectins. Hybrid feature space before feature selection is developed by combining different individual feature spaces, CTD (Composition, Transition, and Distribution), PseAAC (Pseudo Amino Acid Composition), PSSM (Position-Specific Scoring Matrix), and disorder. The SMOTE (Synthetic Minority Oversampling Technique) is applied to solve the imbalanced data problem. To reduce feature redundancy and computation complexity, we propose a two-step feature selection process to select informative features. A 5-fold cross-validation technique is used for the evaluation of various prediction strategies. The proposed method achieves a sensitivity of 0.779, a specificity of 0.717, an accuracy of 0.748, and an MCC (Matthew's Correlation Coefficient) of 0.497. The prediction results are also compared with other existing methods on the same dataset using 5-fold cross-validation. The comparison results demonstrate the high effectiveness of our method for predicting cancerlectins.


Subject(s)
Amino Acids/chemistry , Computational Biology , Lectins/chemistry , Neoplasms/drug therapy , Amino Acid Sequence/genetics , Amino Acids/therapeutic use , Cell Proliferation/drug effects , Databases, Protein , Humans , Lectins/therapeutic use , Neoplasms/pathology , Position-Specific Scoring Matrices , Prognosis
17.
Elife ; 62017 05 19.
Article in English | MEDLINE | ID: mdl-28524819

ABSTRACT

A hallmark feature of chronic pain is its ability to impact other sensory and affective experiences. It is notably associated with hypersensitivity at the site of tissue injury. It is less clear, however, if chronic pain can also induce a generalized site-nonspecific enhancement in the aversive response to nociceptive inputs. Here, we showed that chronic pain in one limb in rats increased the aversive response to acute pain stimuli in the opposite limb, as assessed by conditioned place aversion. Interestingly, neural activities in the anterior cingulate cortex (ACC) correlated with noxious intensities, and optogenetic modulation of ACC neurons showed bidirectional control of the aversive response to acute pain. Chronic pain, however, altered acute pain intensity representation in the ACC to increase the aversive response to noxious stimuli at anatomically unrelated sites. Thus, chronic pain can disrupt cortical circuitry to enhance the aversive experience in a generalized anatomically nonspecific manner.


Subject(s)
Behavior, Animal , Chronic Pain , Gyrus Cinguli/physiology , Nociceptors/physiology , Animals , Rats
18.
PLoS One ; 11(9): e0163274, 2016.
Article in English | MEDLINE | ID: mdl-27662651

ABSTRACT

Antioxidant proteins perform significant functions in maintaining oxidation/antioxidation balance and have potential therapies for some diseases. Accurate identification of antioxidant proteins could contribute to revealing physiological processes of oxidation/antioxidation balance and developing novel antioxidation-based drugs. In this study, an ensemble method is presented to predict antioxidant proteins with hybrid features, incorporating SSI (Secondary Structure Information), PSSM (Position Specific Scoring Matrix), RSA (Relative Solvent Accessibility), and CTD (Composition, Transition, Distribution). The prediction results of the ensemble predictor are determined by an average of prediction results of multiple base classifiers. Based on a classifier selection strategy, we obtain an optimal ensemble classifier composed of RF (Random Forest), SMO (Sequential Minimal Optimization), NNA (Nearest Neighbor Algorithm), and J48 with an accuracy of 0.925. A Relief combined with IFS (Incremental Feature Selection) method is adopted to obtain optimal features from hybrid features. With the optimal features, the ensemble method achieves improved performance with a sensitivity of 0.95, a specificity of 0.93, an accuracy of 0.94, and an MCC (Matthew's Correlation Coefficient) of 0.880, far better than the existing method. To evaluate the prediction performance objectively, the proposed method is compared with existing methods on the same independent testing dataset. Encouragingly, our method performs better than previous studies. In addition, our method achieves more balanced performance with a sensitivity of 0.878 and a specificity of 0.860. These results suggest that the proposed ensemble method can be a potential candidate for antioxidant protein prediction. For public access, we develop a user-friendly web server for antioxidant protein identification that is freely accessible at http://antioxidant.weka.cc.

19.
Anesthesiology ; 125(5): 1030-1043, 2016 11.
Article in English | MEDLINE | ID: mdl-27627816

ABSTRACT

BACKGROUND: AMPAkines augment the function of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the brain to increase excitatory outputs. These drugs are known to relieve persistent pain. However, their role in acute pain is unknown. Furthermore, a specific molecular and anatomic target for these novel analgesics remains elusive. METHODS: The authors studied the analgesic role of an AMPAkine, CX546, in a rat paw incision (PI) model of acute postoperative pain. The authors measured the effect of AMPAkines on sensory and depressive symptoms of pain using mechanical hypersensitivity and forced swim tests. The authors asked whether AMPA receptors in the nucleus accumbens (NAc), a key node in the brain's reward and pain circuitry, can be a target for AMPAkine analgesia. RESULTS: Systemic administration of CX546 (n = 13), compared with control (n = 13), reduced mechanical hypersensitivity (50% withdrawal threshold of 6.05 ± 1.30 g [mean ± SEM] vs. 0.62 ± 0.13 g), and it reduced depressive features of pain by decreasing immobility on the forced swim test in PI-treated rats (89.0 ± 15.5 vs. 156.7 ± 18.5 s). Meanwhile, CX546 delivered locally into the NAc provided pain-relieving effects in both PI (50% withdrawal threshold of 6.81 ± 1.91 vs. 0.50 ± 0.03 g; control, n = 6; CX546, n = 8) and persistent postoperative pain (spared nerve injury) models (50% withdrawal threshold of 3.85 ± 1.23 vs. 0.45 ± 0.00 g; control, n = 7; CX546, n = 11). Blocking AMPA receptors in the NAc with 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione inhibited these pain-relieving effects (50% withdrawal threshold of 7.18 ± 1.52 vs. 1.59 ± 0.66 g; n = 8 for PI groups; 10.70 ± 3.45 vs. 1.39 ± 0.88 g; n = 4 for spared nerve injury groups). CONCLUSIONS: AMPAkines relieve postoperative pain by acting through AMPA receptors in the NAc.


Subject(s)
Analgesics/pharmacology , Dioxoles/pharmacology , Nucleus Accumbens/drug effects , Pain, Postoperative/drug therapy , Piperidines/pharmacology , Receptors, AMPA/drug effects , Animals , Behavior, Animal/drug effects , Depression/prevention & control , Disease Models, Animal , Male , Neuralgia/drug therapy , Rats , Rats, Sprague-Dawley
20.
BMC Bioinformatics ; 17(1): 225, 2016 May 31.
Article in English | MEDLINE | ID: mdl-27245069

ABSTRACT

BACKGROUND: Aptamer-protein interacting pairs play a variety of physiological functions and therapeutic potentials in organisms. Rapidly and effectively predicting aptamer-protein interacting pairs is significant to design aptamers binding to certain interested proteins, which will give insight into understanding mechanisms of aptamer-protein interacting pairs and developing aptamer-based therapies. RESULTS: In this study, an ensemble method is presented to predict aptamer-protein interacting pairs with hybrid features. The features for aptamers are extracted from Pseudo K-tuple Nucleotide Composition (PseKNC) while the features for proteins incorporate Discrete Cosine Transformation (DCT), disorder information, and bi-gram Position Specific Scoring Matrix (PSSM). We investigate predictive capabilities of various feature spaces. The proposed ensemble method obtains the best performance with Youden's Index of 0.380, using the hybrid feature space of PseKNC, DCT, bi-gram PSSM, and disorder information by 10-fold cross validation. The Relief-Incremental Feature Selection (IFS) method is adopted to obtain the optimal feature set. Based on the optimal feature set, the proposed method achieves a balanced performance with a sensitivity of 0.753 and a specificity of 0.725 on the training dataset, which indicates that this method can solve the imbalanced data problem effectively. To evaluate the prediction performance objectively, an independent testing dataset is used to evaluate the proposed method. Encouragingly, our proposed method performs better than previous study with a sensitivity of 0.738 and a Youden's Index of 0.451. CONCLUSIONS: These results suggest that the proposed method can be a potential candidate for aptamer-protein interacting pair prediction, which may contribute to finding novel aptamer-protein interacting pairs and understanding the relationship between aptamers and proteins.


Subject(s)
Aptamers, Peptide/chemistry , Aptamers, Peptide/genetics , Proteins/chemistry , Proteins/genetics , Amino Acid Sequence , Humans , Models, Molecular , SELEX Aptamer Technique/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...