Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38890986

ABSTRACT

Sulfites play imperative roles in food crops and food products, serving as sulfur nutrients for food crops and as food additives in various foods. It is necessary to develop an effective method for the on-site quantification of sulfites in food samples. Here, 7-(diethylamino) quinoline is used as a fluorescent group and electron donor, alongside the pyridinium salt group as an electron acceptor and the C=C bond as the sulfite-specific recognition group. We present a novel fluorescent sensor based on a mechanism that modulates the efficiency of intramolecular charge transfer (ICT), CY, for on-site quantitative measurement of sulfite in food. The fluorescent sensor itself exhibited fluorescence in the near-infrared light (NIR) region, effectively minimizing the interference of background fluorescence in food samples. Upon exposure to sulfite, the sensor CY displayed a ratiometric fluorescence response (I447/I692) with a high sensitivity (LOD = 0.061 µM), enabling accurate quantitative measurements in complex food environments. Moreover, sensor CY also displayed a colorimetric response to sulfite, making sensor CY measure sulfite in both fluorescence and colorimetric dual-signal modes. Sensor CY has been utilized for quantitatively measuring sulfite in red wine and sugar with recoveries between 99.65% and 101.90%, and the RSD was below 4.0%. The sulfite concentrations in live cells and zebrafish were also monitored via fluorescence imaging. Moreover, the sulfite assimilated by lettuce leaves was monitored, and the results demonstrated that excessive sulfite in leaf tissue could lead to leaf tissue damage. In addition, the sulfate-transformed sulfite in lettuce stem tissue was tracked, providing valuable insights for evaluating sulfur nutrients in food crops. More importantly, to accomplish the on-site quantitative measurement of sulfite in food samples, a portable sensing system was prepared. Sensor CY and the portable sensing system were successfully used for the on-site quantitative measurement of sulfite in food.

2.
Anal Chem ; 96(22): 9192-9199, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38758357

ABSTRACT

Singlet oxygen (1O2) plays imperative roles in a variety of biotic or abiotic stresses in crops. The change of its concentration within a crop is closely related to the crop growth and development. Accordingly, there is an urgent need to develop an efficient analytical method for on-site quantitative detection of 1O2 in crops. Here, we judiciously constructed a novel ratiometric fluorescent probe, SX-2, for the detection of 1O2 in crops. Upon treating with 1O2, probe SX-2 displayed highly selective ratiometric fluorescence response, which is favorable for the quantitative detection of 1O2. Concurrently, the fluorescence solution color of probe SX-2 was varied, obviously from blue to yellow, indicating that the probe is beneficial for on-site detection by the naked eye. Sensing reaction mechanism studies showed that the 2,3-diphenyl imidazole group in SX-2 could function as a new selective recognition group for 1O2. Probe SX-2 was utilized for the detection of photoirradiation-induced 1O2 and endogenous 1O2 in living cells. The changes in the 1O2 level in zebrafish were also tracked by fluorescence imaging. In addition, the production of 1O2 in crop leaves under a light source of different wavelengths was studied. The results demonstrated more 1O2 were produced under a light source of 365 nm. Furthermore, to achieve on-site quantitative detection, a mobile fluorescence analysis device has been made. Probe SX-2 and mobile fluorescence analysis device were capable of on-site quantitative detecting of 1O2 in crops. The method developed herein will be convenient for the on-site quantitative measurement of 1O2 in distinct crops.


Subject(s)
Crops, Agricultural , Fluorescent Dyes , Singlet Oxygen , Zebrafish , Fluorescent Dyes/chemistry , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Crops, Agricultural/chemistry , Crops, Agricultural/metabolism , Animals , Optical Imaging , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...