Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 159(18)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37962452

ABSTRACT

Bipolar gradual resistive switching was investigated in ITO/InGaZnO/ITO resistive switching devices. Controlled intrinsic oxygen vacancy formation inside the switching layer enabled the establishment of a stable multilevel memory state, allowing for RESET voltage control and non-degradable data endurance. The ITO/InGaZnO interface governs the migration of oxygen ions and redox reactions within the switching layer. Voltage-stress-induced electron trapping and oxygen vacancy formation were observed before conductive filament electroforming. This device mimicked biological synapses, demonstrating short- and long-term potentiation and depression through electrical pulse sequences. Modulation of post-synaptic currents and pulse frequency-dependent short-term potentiation were successfully emulated in the InGaZnO-based artificial synapse. The ITO/InGaZnO/ITO memristor exhibited spike-amplitude-dependent plasticity, spike-rate-dependent plasticity, and potentiation-depression synaptic learning with low energy consumption, making it a promising candidate for large-scale integration.

2.
Nanoscale ; 15(34): 14267, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37609880

ABSTRACT

Correction for 'Synaptic plasticity and non-volatile memory characteristics in TiN-nanocrystal-embedded 3D vertical memristor-based synapses for neuromorphic systems' by Seyeong Yang et al., Nanoscale, 2023, https://doi.org/10.1039/D3NR01930F.

3.
Nanoscale ; 15(32): 13239-13251, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37525621

ABSTRACT

Although vertical configurations for high-density storage require challenging process steps, such as etching high aspect ratios and atomic layer deposition (ALD), they are more affordable with a relatively simple lithography process and have been employed in many studies. Herein, the potential of memristors with CMOS-compatible 3D vertical stacked structures of Pt/Ti/HfOx/TiN-NCs/HfOx/TiN is examined for use in neuromorphic systems. The electrical characteristics (including I-V properties, retention, and endurance) were investigated for both planar single cells and vertical resistive random-access memory (VRRAM) cells at each layer, demonstrating their outstanding non-volatile memory capabilities. In addition, various synaptic functions (including potentiation and depression) under different pulse schemes, excitatory postsynaptic current (EPSC), and spike-timing-dependent plasticity (STDP) were investigated. In pattern recognition simulations, an improved recognition rate was achieved by the linearly changing conductance, which was enhanced by the incremental pulse scheme. The achieved results demonstrated the feasibility of employing VRRAM with TiN nanocrystals in neuromorphic systems that resemble the human brain.

4.
Int J Mol Sci ; 23(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36362036

ABSTRACT

Nitride film played an essential role as an excellent diffusion barrier in the semiconductor field for several decades. In addition, interest in next-generation memories induced researchers' attention to nitride film as a new storage medium. A Pt/AlN/TaN device was investigated for resistive random-access memory (RRAM) application in this work. Resistive switching properties were examined in the AlN thin film formed by atomic layer deposition (ALD). The unique switching feature conducted under the positive voltage was investigated, while the typical bipolar switching was conducted under the application of negative voltage. Good retention and DC, and pulse endurances were achieved in both conditions and compared to the memory performances. Finally, the electronic behaviors based on the unique switching feature were analyzed through X-ray photoelectron spectroscopy (XPS) and the current-voltage (I-V) linear fitting model.


Subject(s)
Computer Storage Devices , Semiconductors , Electronics , Photoelectron Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...