Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 14103, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29074848

ABSTRACT

Human bladder cancer (BC) cells exhibit a high basal level of autophagic activity with accumulation of acridine-orange(AO)-stained acidic vesicular organelles. The rapid AO relocalization was observed in treated BC cells under blue-light emission. To investigate the cytotoxic effects of AO on human BC cell lines under blue-light exposure, human immortalized uroepithelial (SV-Huc-1) and BC cell lines (5637 and T24) were treated with indicated concentrations of AO or blue-light exposure alone and in combination. The cell viability was then determined using WST-1, time-lapse imaging with a Cytosmart System and continuous quantification with a multi-mode image-based reader. Treatment of AO or blue-light exposure alone did not cause a significant loss of viability in BC cells. However, AO exhibited a dose-dependent increment of cytotoxicity toward BC cells under blue-light exposure. Furthermore, the tumor formation of BC cells with treatment was significantly reduced when evaluated in a mouse xenograft model. The photodamage caused by AO was nearly neglected in SV-Huc-1 cells, suggesting a differential effect of this treatment between cancer and normal cells. In summary, AO, as a photosensitizer, disrupts acidic organelles and induces cancer cell death in BC cells under blue-light irradiation. Our findings may serve as a novel therapeutic strategy against human BC.


Subject(s)
Acridine Orange/pharmacology , Light , Photosensitizing Agents/pharmacology , Urinary Bladder Neoplasms/pathology , Apoptosis/drug effects , Apoptosis/radiation effects , Autophagy/drug effects , Autophagy/radiation effects , Carcinogenesis/drug effects , Carcinogenesis/radiation effects , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Epithelial Cells/drug effects , Epithelial Cells/pathology , Epithelial Cells/radiation effects , Humans
2.
Kaohsiung J Med Sci ; 33(5): 215-223, 2017 May.
Article in English | MEDLINE | ID: mdl-28433067

ABSTRACT

Chloroquine (CQ) and hydroxychloroquine (HCQ), two antimalarial drugs, are suggested to have potential anticancer properties. in the present study, we investigated the effects of CQ and HCQ on cell growth of bladder cancer with emphasis on autophagy inhibition and apoptosis induction in vitro. The results showed that CQ and HCQ inhibited the proliferation of multiple human bladder cell lines (including RT4, 5637, and T24) in a time- and dose-dependent fashion, especially in advanced bladder cancer cell lines (5637 and T24) compared to immortalized uroepithelial cells (SV-Huc-1) or other reference cancer cell lines (PC3 and MCF-7). We found that 24-hour treatment of CQ or HCQ significantly decreased the clonogenic formation in 5637 and T24 cells compared to SV-Huc-1. As human bladder cancer tumor exhibits high basal level of autophagic activities, we detected the autophagic flux in cells treated with CQ and HCQ, showing an alternation in LC3 flux in CQ- or HCQ-treated cells. Moreover, bladder cancer cells treated with CQ and HCQ underwent apoptosis, resulting in increased caspase 3/7 activities, increased level of cleaved poly(ADP-ribose) polymerase (PARP), caspase 3, and DNA fragmentation. Given these results, targeting autophagy with CQ and HCQ represents an effective cancer therapeutic strategy against human bladder cancer.


Subject(s)
Chloroquine/pharmacology , Hydroxychloroquine/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA Fragmentation/drug effects , Humans , MCF-7 Cells , Poly(ADP-ribose) Polymerases/metabolism , Urinary Bladder Neoplasms/metabolism
3.
Oncotarget ; 8(12): 20220-20234, 2017 Mar 21.
Article in English | MEDLINE | ID: mdl-28423628

ABSTRACT

Benzyl isothiocyanate (BITC) in cruciferous plants, which are part of the human diet, has been shown to induce apoptosis in various types of cancer. In this study, we show that BITC effectively suppresses the growth of cultured human prostate cancer cells (CRW-22Rv1 and PC3) by causing mitochondrial membrane potential loss, caspase 3/7 activation and DNA fragmentation. Furthermore, BITC induces ROS generation in these cells. The induction of apoptosis by BITC was significantly attenuated in the presence of N-acetylcysteine (NAC) and catalase (CAT), well-studied ROS scavengers. The induction of autophagy in BITC-treated cells were also diminished by the application of NAC or CAT. In addition, BITC-induced apoptosis and autophagy were both enhanced by the pretreatment of catalase inhibitor, 3-Amino-1,2,4-triazole (3-AT). Pretreatment with specific inhibitors of autophagy (3-methyladenine or bafilomycin A1) or apoptosis (Z-VAD-FMK) reduced BITC-induced autophagy and apoptosis, respectively, but did not abolish BITC-induced ROS generation. In conclusion, the present study provides evidences that BITC caused prostate cancer cell death was dependent on the ROS status, and clarified the mechanism underlying BITC-induced cell death, which involves the induction of ROS production, autophagy and apoptosis, and the relationship between these three important processes.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Isothiocyanates/pharmacology , Prostatic Neoplasms/pathology , Blotting, Western , Cell Line, Tumor , Cell Survival/drug effects , Flow Cytometry , Humans , Male , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species
4.
Drug Des Devel Ther ; 10: 1501-13, 2016.
Article in English | MEDLINE | ID: mdl-27143856

ABSTRACT

BACKGROUND: Mammalian target of rapamycin (mTOR), involved in PI3K/AKT/mTOR pathway, is known to play a central role in regulating the growth of cancer cells. The PI3K/AKT/mTOR pathway enhances tumor survival and proliferation through suppressing autophagy, which sustains energy homeostasis by collecting and recycling cellular components under stress conditions. Conversely, inhibitors of the mTOR pathway such as RAD001 induce autophagy, leading to promotion of tumor survival and limited antitumor efficacy. We thus hypothesized that the use of autophagy inhibitor in combination with mTOR inhibition improves the cytotoxicity of mTOR inhibitors in bladder cancer. MATERIALS AND METHODS: The cytotoxicity of RT4, 5637, HT1376, and T24 human bladder cancer cells treated with RAD001 alone or combined with autophagy inhibitors (3-methyladenine (3-MA), bafilomycin A1 (Baf A1), chloroquine, or hydroxychloroquine) was assessed using the WST-8 cell viability kit. The autophagy status in cells was analyzed by the detection of microtubule-associated light chain 3 form II (LC3-II), using immunofluorescent staining and Western blot. Acidic vesicular organelle (AVO) formation in treated cells was determined by acridine orange vital staining. Inhibition of mTOR pathway by RAD001 was monitored by using a homemade quantitative polymerase chain reaction gene array, while phospho-mTOR was detected using Western blot. Induced apoptosis was determined by measurement of caspase 3/7 activity and DNA fragmentation in cells after treatment. RESULTS: Advanced bladder cancer cells (5637, HT1376, and T24) were more resistant to RAD001 than RT4. Autophagy flux detected by the expression of LC3-II showed RAD001-induced autophagy. AVO formation was detected in cells treated with RAD001 and was inhibited by the addition of 3-MA or Baf A1. Cotreatment of RAD001 with autophagy inhibitors further reduced cell viability and induced apoptosis in bladder cancer cells. CONCLUSION: Our results indicate that simultaneous inhibition of the mTOR and autophagy pathway significantly enhances apoptosis, and it is suggested to be a new therapeutic paradigm for the treatment of bladder cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Everolimus/pharmacology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Everolimus/chemistry , Humans , Structure-Activity Relationship , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Tumor Cells, Cultured
5.
J Urol ; 195(4 Pt 1): 1126-35, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26519656

ABSTRACT

PURPOSE: Cancer cells adapt to stress by activation of the autophagy pathway primed for survival. A high basal level of autophagic activity was found in human bladder cancer cell lines. We studied the significance of the phenomenon on cancer cell survival. MATERIALS AND METHODS: The immortalized human bladder epithelial cell line SV-HUC-1 and the human bladder cancer cell lines RT-4 and 5637 together with human bladder cancer specimens collected from patients were used. A commercially available bladder cancer microarray was applied to confirm the findings. LC3 (light chain-3) II protein detection was done to determine the presence of autophagy. Caspase 3 and DNA fragmentation was performed to detect apoptosis. RESULTS: Bladder cancer cell lines showed activated autophagic flux compared to SV-HUC-1 cells, prostate cancer cells and breast cancer cells. Results were confirmed in human bladder cancer specimens. Autophagy inhibition by Baf (bafilomycin) A1, or by knockdown of ATG (autophagy related protein) 7 or 12 induced cytotoxicity in multiple human bladder cell lines. Induction of apoptosis was found in cells with autophagy inhibition. Although the disruption of mitochondria membrane potential or the generation of reactive oxygen species was detected in Baf A1 treated cells, intensity was mild and not thought to be related to apoptosis of bladder cancer cells. CONCLUSIONS: Our results indicate that autophagy is required for the growth and survival of human bladder cancer cells.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Macrolides/pharmacology , Urinary Bladder Neoplasms/pathology , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Tumor Cells, Cultured
6.
PLoS One ; 7(3): e33152, 2012.
Article in English | MEDLINE | ID: mdl-22448237

ABSTRACT

Peripheral CD8(+) T cells are defective in both IL-15 and IL-15Rα knock-out (KO) mice; however, whether IL-15/IL-15Rα deficiency has a similar effect on CD8 single-positive (SP) thymocytes remains unclear. In this study, we investigated whether the absence of IL-15 transpresentation in IL-15Rα KO mice results in a defect in thymic CD8 single positive (SP) TCR(hi) thymocytes. Comparison of CD8SP TCR(hi) thymocytes from IL-15Rα KO mice with their wild type (WT) counterparts by flow cytometry showed a significant reduction in the percentage of CD69(-) CD8SP TCR(hi) thymocytes, which represent thymic premigrants. In addition, analysis of in vivo 5-bromo-2-deoxyuridine (BrdU) incorporation demonstrated that premigrant expansion of CD8SP TCR(hi) thymocytes was reduced in IL-15Rα KO mice. The presence of IL-15 transpresentation-dependent expansion in CD8SP TCR(hi) thymocytes was assessed by culturing total thymocytes in IL-15Rα-Fc fusion protein-pre-bound plates that were pre-incubated with IL-15 to mimic IL-15 transpresentation in vitro. The results demonstrated that CD8SP thymocytes selectively outgrew other thymic subsets. The contribution of the newly divided CD8SP thymocytes to the peripheral CD8(+) T cell pool was examined using double labeling with intrathymically injected FITC and intravenously injected BrdU. A marked decrease in FITC(+) BrdU(+) CD8(+) T cells was observed in the IL-15Rα KO lymph nodes. Through these experiments, we identified an IL-15 transpresentation-dependent proliferation process selective for the mature CD8SP premigrant subpopulation. Importantly, this process may contribute to the maintenance of the normal peripheral CD8(+) T cell pool.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , Cell Proliferation , Interleukin-15 Receptor alpha Subunit/physiology , Interleukin-15/metabolism , Lymphoma/pathology , Thymocytes/cytology , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Female , Flow Cytometry , Lymphocyte Activation , Lymphoma/immunology , Lymphoma/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Thymocytes/immunology , Thymocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...