Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 316(Pt 2): 120620, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36372368

ABSTRACT

The non-radical pathway of periodate (PI) activation for the removal of persistent organic contaminants has received increasing attention due to its higher stability and oxidative advantages. In this study, the degradation of sulfamethoxazole (SMX) by ball mill treated magnetic sludge biochar (BM-MSBC) through activation of PI by electron transfer mechanism was reported. Experimental and characterization results showed that the ball milling treatment resulted in a better pore and defect structure, which also significantly enhanced the electron transfer capacity of the sludge biochar. The BM-MSBC/PI system exhibited notable dependence of activator concentration and initial pH, while the effect of PI concentration was not significant. The coexisting substances (common anions and natural organic matters) hardly affect the degradation of SMX in the BM-MSBC/PI system. The phytotoxicity experiments suggested that the treatment of BM-MSBC/PI system could significantly reduce the biological toxicity of SMX solution. This study provides a novel, economical, and facile modification method for the application of sludge biochar in advanced oxidation processes.


Subject(s)
Sulfamethoxazole , Water Pollutants, Chemical , Sewage , Electrons , Charcoal/chemistry , Water Pollutants, Chemical/analysis , Adsorption
2.
J Hazard Mater ; 434: 128860, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35427969

ABSTRACT

In this study, a novel heterogeneous ultrasonic (US)-enhanced sludge biochar (SBC) activated periodate (PI) system was established and explored for the rapid removal of levofloxacin in the aqueous environment. This study focused on the mechanisms of US-enhanced SBC co-activation of PI for levofloxacin degradation. The results indicated that US and SBC exhibited a remarkable synergistic reinforcing activation effect on PI compared to single PI activation systems. The SBC/US/PI system achieved approximately 95% of levofloxacin removal, 51.5% of TOC removal, and 22% of dechlorination rate within 60 min with virtually no heavy metals released into the water matrix. In addition, the acute ecotoxicity of the solutions treated with the SBC/US/PI system was substantially reduced. The presence of IO3•, •OH, 1O2 and O2•- were identified in the SBC/US/PI system using quenching experiments and EPR technology while •OH and 1O2 were the predominant reactive species. Mechanistic studies have suggested that the cavitation effect of ultrasonic improved the dispersion and mass transfer efficiency of SBC and accelerated the desorption process of SBC. Possible pathways of levofloxacin degradation were proposed. This study provides a novel and promising strategy for the efficient removal of emerging contaminants such as antibiotics from the water matrix.


Subject(s)
Sewage , Water Pollutants, Chemical , Charcoal , Levofloxacin , Periodic Acid , Ultrasonics , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...