Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Pattern Anal Mach Intell ; 45(7): 8020-8035, 2023 07.
Article in English | MEDLINE | ID: mdl-37018263

ABSTRACT

Recent advances in self-supervised learning (SSL) in computer vision are primarily comparative, whose goal is to preserve invariant and discriminative semantics in latent representations by comparing siamese image views. However, the preserved high-level semantics do not contain enough local information, which is vital in medical image analysis (e.g., image-based diagnosis and tumor segmentation). To mitigate the locality problem of comparative SSL, we propose to incorporate the task of pixel restoration for explicitly encoding more pixel-level information into high-level semantics. We also address the preservation of scale information, a powerful tool in aiding image understanding but has not drawn much attention in SSL. The resulting framework can be formulated as a multi-task optimization problem on the feature pyramid. Specifically, we conduct multi-scale pixel restoration and siamese feature comparison in the pyramid. In addition, we propose non-skip U-Net to build the feature pyramid and develop sub-crop to replace multi-crop in 3D medical imaging. The proposed unified SSL framework (PCRLv2) surpasses its self-supervised counterparts on various tasks, including brain tumor segmentation (BraTS 2018), chest pathology identification (ChestX-ray, CheXpert), pulmonary nodule detection (LUNA), and abdominal organ segmentation (LiTS), sometimes outperforming them by large margins with limited annotations. Codes and models are available at https://github.com/RL4M/PCRLv2.


Subject(s)
Algorithms , Brain Neoplasms , Humans , Imaging, Three-Dimensional , Semantics , Image Processing, Computer-Assisted
2.
IEEE Trans Pattern Anal Mach Intell ; 43(8): 2765-2779, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32078531

ABSTRACT

Grounding referring expressions in images aims to locate the object instance in an image described by a referring expression. It involves a joint understanding of natural language and image content, and is essential for a range of visual tasks related to human-computer interaction. As a language-to-vision matching task, the core of this problem is to not only extract all the necessary information (i.e., objects and the relationships among them) in both the image and referring expression, but also make full use of context information to align cross-modal semantic concepts in the extracted information. Unfortunately, existing work on grounding referring expressions fails to accurately extract multi-order relationships from the referring expression and associate them with the objects and their related contexts in the image. In this paper, we propose a cross-modal relationship extractor (CMRE) to adaptively highlight objects and relationships (spatial and semantic relations) related to the given expression with a cross-modal attention mechanism, and represent the extracted information as a language-guided visual relation graph. In addition, we propose a Gated Graph Convolutional Network (GGCN) to compute multimodal semantic contexts by fusing information from different modes and propagating multimodal information in the structured relation graph. Experimental results on three common benchmark datasets show that our Cross-Modal Relationship Inference Network, which consists of CMRE and GGCN, significantly surpasses all existing state-of-the-art methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...