Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(16): 18212-18223, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38680363

ABSTRACT

17ß-Estradiol is an ovarian hormone that regulates energy circulation and storage by acting on the central nervous system. However, the metabolic differences between the blood and brain when stimulated by 17ß-estradiol are poorly understood. Moreover, research using menopause-induced models to investigate primary metabolites in the blood and brain is limited. Thus, this study aimed to identify metabolic changes in the plasma and brain resulting from 17ß-estradiol supplementation in an estrogen-deficient mouse model. Three groups of mice were utilized: sham-operated mice (Sham), ovariectomized mice (OVX), and ovariectomized mice that received a weekly supplementation of 17ß-estradiol (E2). Plasma and brain samples from these mice were subjected to metabolic analysis using gas chromatography-time-of-flight-mass spectrometry. Compared with the plasma samples from the Sham and OVX groups, the plasma samples from the E2 group contained higher contents of branched-chain amino acids (BCAAs), such as valine, isoleucine, and leucine. Meanwhile, the brain samples from the E2 group contained higher contents of most metabolites, including BCAAs, neurotransmitters, tricarboxylic acid cycle intermediates, and fatty acids, than those from the two other groups. This study is the first to reveal differences in energy metabolism induced by 17ß-estradiol supplementation through brain metabolic profiling of ovariectomized mice, emphasizing the importance of brain metabolic profiling in menopausal hormone research.

2.
Plants (Basel) ; 12(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38005737

ABSTRACT

Salvia plebeia (Lamiaceae) is a medicinal plant containing diverse bioactive constituents that have biological properties. In this study, we determined the optimal conditions (media and auxin) for the hairy root culture of S. plebeia for the growth and accumulation of phenolic compounds and evaluated its antioxidant activities. Rosmarinic acid and five phenylpropanoids were detected using high-performance liquid chromatography. The hairy roots grown in 1/2 SH medium with 1 mg/L NAA had a high level of rosmarinic acid content. Hairy roots cultured in 1 mg/L NAA had the highest total content of five phenylpropanoids. Compared to wild-type roots grown in the field, hairy roots (NAA 1) expressed similar levels of rosmarinic acid but significantly enhanced phenylpropanoid accumulation. Furthermore, the total phenolic content and total flavonoid content of hairy roots (NAA 1) were 2.22 and 1.73 times higher than those of wild-type roots. In the results of DPPH, ABTS, and reducing power assays, the hairy roots (NAA 1) showed higher free radical scavenging effects and reduction potential than the wild-type roots. These results suggest that S. plebeia hairy roots cultured under optimal conditions, which exhibit enhanced phenolic compound accumulation and antioxidant activity, can potentially be used as sources of antioxidants.

3.
Front Plant Sci ; 13: 983776, 2022.
Article in English | MEDLINE | ID: mdl-36325544

ABSTRACT

The hairy root (HR) culture system is an excellent alternative strategy to the whole plant system for producing valuable compounds. However, selection of suitable Agrobacterium strain for the successful induction of HR is an essential step for enhanced production of beneficial secondary metabolites. In this study, we examined the transformation efficiency of various A. rhizogenes strains (ATCC 13333, ATCC 15834, A4, R1000, R1200, and R1601) for transgenic HRs induction in Ocimum basilicum. Among the tested strains, the R1601 was found to be one of the most promising strain for mass production of HR in terms of transformation efficiency (94%) and the number and length of HR (8.4 ± 0.52 and 1.68 ± 0.14 cm). The HR induced by the same strain exhibited highest levels of rosmarinic acid level (62.05 ± 4.94 µg/g DW) and total phenolic content (62.3 ± 4.95 µg/g DW). A total of 55 metabolites were identified using high-performance liquid chromatography (HPLC) and gas chromatography-time-of-flight mass spectrometry (GC-TOFMS). The PCA and PLS-DA plot of the identified metabolites showed that HR induced by A4 and ATCC 15834 displayed variation in primary and secondary metabolite contents. Analysis of the metabolic pathway identified a total of 56 pathways, among which 35 were found to be impacted. A heat map and hierarchical clustering analysis indicated that HR induced by different Agrobacterium strains exhibited differential metabolites profiles. In conclusion, Agrobacterium strains R1601 is one of the best and most promising strains for inducing mass HR production and enhanced levels of secondary metabolites in O. basilicum.

SELECTION OF CITATIONS
SEARCH DETAIL
...