Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.585
Filter
1.
Biodegradation ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844743

ABSTRACT

A novel coupling process to replace the traditional multi-stage anammox process-sulfur autotrophic denitrification (SAD) coupled anaerobic ammonium oxidation (anammox) system was designed, which solved problems of nitrate produced in anammox process and low nitrate conversion rate caused by nitrite accumulation in SAD process. Different filter structures (SAD filter and anammox granular sludge) were investigated to further explore the excellent performance of the novel integrated reactor. The results of sequential batch experiments indicated that nitrite accumulation occurred during SAD, which inhibited the conversion of nitrate to dinitrogen gas. When SAD filter and anammox granular sludge were added to packed bed reactor simultaneously, the nitrate removal rate increased by 37.21% and effluent nitrite concentration decreased by 100% compared to that achieved using SAD. The stratified filter structure solved groove flow. Different proportion influence of SAD filter and anammox granular sludge on the stratified filter structure was evaluated. More suitable ratio of SAD filter to anammox granular sludge was 2:1. Proteobacteria (57.26%), Bacteroidetes (20.12%) and Chloroflexi (9.95%) were the main phyla. The dominant genera of denitrification functional bacteria were Thiobacillus (39.80%), Chlorobaculum (3.99%), norank_f_PHOs-HE36 (2.90%) and Ignavibacterium (2.64%). The dominant genus of anammox bacterium was Candidatus_Kuenenia (3.05%).

2.
J Nanobiotechnology ; 22(1): 316, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844939

ABSTRACT

Adipose-derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs) isolated from adipose tissue. They possess remarkable properties, including multipotency, self-renewal, and easy clinical availability. ADSCs are also capable of promoting tissue regeneration through the secretion of various cytokines, factors, and extracellular vesicles (EVs). ADSC-derived EVs (ADSC-EVs) act as intercellular signaling mediators that encapsulate a range of biomolecules. These EVs have been found to mediate the therapeutic activities of donor cells by promoting the proliferation and migration of effector cells, facilitating angiogenesis, modulating immunity, and performing other specific functions in different tissues. Compared to the donor cells themselves, ADSC-EVs offer advantages such as fewer safety concerns and more convenient transportation and storage for clinical application. As a result, these EVs have received significant attention as cell-free therapeutic agents with potential future application in regenerative medicine. In this review, we focus on recent research progress regarding regenerative medical use of ADSC-EVs across various medical conditions, including wound healing, chronic limb ischemia, angiogenesis, myocardial infarction, diabetic nephropathy, fat graft survival, bone regeneration, cartilage regeneration, tendinopathy and tendon healing, peripheral nerve regeneration, and acute lung injury, among others. We also discuss the underlying mechanisms responsible for inducing these therapeutic effects. We believe that deciphering the biological properties, therapeutic effects, and underlying mechanisms associated with ADSC-EVs will provide a foundation for developing a novel therapeutic approach in regenerative medicine.


Subject(s)
Adipose Tissue , Extracellular Vesicles , Mesenchymal Stem Cells , Regenerative Medicine , Humans , Extracellular Vesicles/metabolism , Regenerative Medicine/methods , Adipose Tissue/cytology , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Wound Healing , Regeneration
3.
RSC Adv ; 14(25): 17571-17582, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38828279

ABSTRACT

Kiwifruit bacterial canker, caused by Pseudomonas syringae pv. Actinidiae (Psa), is one of the most important diseases in kiwifruit, creating huge economic losses to kiwifruit-growing countries around the world. Metal-based nanomaterials offer a promising alternative strategy to combat plant diseases induced by bacterial infection. However, it is still challenging to design highly active nanomaterials for controlling kiwifruit bacterial canker. Here, a novel multifunctional nanocomposite (ZnO@PDA-Mn) is designed that integrates the antibacterial activity of zinc oxide nanoparticles (ZnO NPs) with the plant reactive oxygen species scavenging ability of catalase (CAT) enzyme-like active sites through introducing manganese modified polydopamine (PDA) coating. The results reveal that ZnO@PDA-Mn nanocomposites can efficiently catalyze the conversion of H2O2 to O2 and H2O to achieve excellent CAT-like activity. In vitro experiments demonstrate that ZnO@PDA-Mn nanocomposites maintain the antibacterial activity of ZnO NPs and induce significant damage to bacterial cell membranes. Importantly, ZnO@PDA-Mn nanocomposites display outstanding curative and protective efficiencies of 47.7% and 53.8% at a dose of 200 µg mL-1 against Psa in vivo, which are superior to those of zinc thiozole (20.6% and 8.8%) and ZnO (38.7% and 33.8%). The nanocomposites offer improved in vivo control efficacy through direct bactericidal effects and decreasing oxidative damage in plants induced by bacterial infection. Our research underscores the potential of nanocomposites containing CAT-like active sites in plant protection, offering a promising strategy for sustainable disease management in agriculture.

4.
Phytochemistry ; 224: 114149, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38763314

ABSTRACT

Farnesylated chalcones were favored by researchers due to their different biological activities. However, only five naturally occurring farnesylated chalcones were described in the literature until now. Here, the farnesylation of six chalcones by the Aspergillus terreus aromatic prenyltransferase AtaPT was reported. Fourteen monofarnesylated chalcones (1F1-1F5, 2F1-2F3, 3F1, 3F2, 4F1, 4F2, 5F1, 6F1, and 6F2) and a difarnesylated product (2F3) were obtained, enriching the diversity of natural farnesylated chalcones significantly. Ten of them are C-farnesylated products, which complement O-farnesylated chalcones by chemical synthesis. Fourteen products have not been reported prior to this study. Nine of the produced compounds (1F2-1F5, 2F1-2F3, 5F1, and 6F1) exhibited inhibitory effect on α-glucosidase with IC50 values ranging from 24.08 ± 1.44 to 190.0 ± 0.28 µM. Among them, compounds 2F3 with IC50 value at 24.08 ± 1.44 µM and 1F4 with IC50 value at 30.09 ± 0.59 µM showed about 20 times stronger than the positive control acarbose with an IC50 at 536.87 ± 24.25 µM in α-glucosidase inhibitory assays.

5.
IEEE Trans Biomed Eng ; PP2024 May 30.
Article in English | MEDLINE | ID: mdl-38814761

ABSTRACT

OBJECTIVE: Freezing of Gait (FOG) often described as the sensation of "the feet being glued to the ground" is prevalent in people with Parkinson's disease (PD) and severely disturbs mobility. In addition to tracking disease progression, precise detection of the exact boundaries for each FOG episode may enable new technologies capable of "breaking" FOG in real time. This study investigates the limits of sensitivity and performance for automatic device-based FOG detection. METHODS: Eight machine-learning classifiers (including Neural Networks, Ensemble & Support Vector Machine) were developed using (i) accelerometer and (ii) accelerometer and gyroscope data from a waist-worn device. While wearing the device, 107 people with PD completed a walking and mobility task designed to elicit FOG. Two clinicians independently annotated the precise FOG episodes using synchronized video according to international guidelines, which were incorporated into a flowchart algorithm developed for this study. Device-detected FOG episodes were compared to the annotated FOG episodes using 10-fold cross-validation to determine accuracy and with Interclass Correlation Coefficients (ICC) to assess level of agreement. RESULTS: Development used 50,962 windows of data representing over 10 hours of data and annotated activities. Very strong agreement between clinicians for precise FOG episodes was observed (90% sensitivity, 92% specificity and ICC1,1  =  0.97 for total FOG duration). Device-based performance varied by method, complexity and cost matrix. The Neural Network that used only 67 accelerometer features provided a good balance between high sensitivity to FOG (89% sensitivity, 81% specificity and ICC1,1  =  0.83) and solution stability (validation loss ≤ 5%). CONCLUSION: The waist-worn device consistently reported accurate detection of precise FOG episodes and compared well to more complex systems. The superior agreement between clinicians indicates there is room to improve future device-based FOG detection by using larger and more varied data sets. SIGNIFICANCE: This study has clinical implications with regard to improving PD care by reducing reliance on clinical FOG assessments and time-consuming visual inspection. It shows high sensitivity to automatically detect FOG is possible.

6.
Adv Sci (Weinh) ; : e2403337, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38810101

ABSTRACT

Sepsis is an infection-triggered, rapidly progressive systemic inflammatory syndrome with a high mortality rate. Currently, there are no promising therapeutic strategies for managing this disease in the clinic. Heparanase plays a crucial role in the pathology of sepsis, and its inhibition can significantly relieve related symptoms. Here, a novel heparanase inhibitor CV122 is rationally designed and synthesized, and its therapeutic potential for sepsis with Lipopolysaccharide (LPS) and Cecal Ligation and Puncture (CLP)-induced sepsis mouse models are evaluated. It is found that CV122 potently inhibits heparanase activity in vitro, protects cell surface glycocalyx structure, and reduces the expression of adhesion molecules. In vivo, CV122 significantly reduces the systemic levels of proinflammatory cytokines, prevents organ damage, improves vitality, and efficiently protects mice from sepsis-induced death. Mechanistically, CV122 inhibits the activity of heparanase, reduces its expression in the lungs, and protects glycocalyx structure of lung tissue. It is also found that CV122 provides effective protection from organ damage and death caused by Crimean-Congo hemorrhagic fever virus (CCHFV) infection. These results suggest that CV122 is a potential drug candidate for sepsis therapy targeting heparanase by inhibiting cytokine storm.

8.
J Hazard Mater ; 472: 134502, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38743980

ABSTRACT

The development of intelligently released and environmentally safe nanocarriers not only aligns with the sustainable agricultural strategy but also offers a potential solution for controlling severe soil-borne bacterial diseases. Herein, the core-shell structured nanocarrier loaded with honokiol bactericide (honokiol@ZnO-ZIF-8) was synthesized via a one-pot method for the targeted control of Ralstonia solanacearum, the causative agent of tobacco bacterial wilt disease. Results indicated that honokiol@ZnO-ZIF-8 nanoparticles induced bacterial cell membrane and DNA damage through the production of excessive reactive oxygen species (ROS), thereby reducing bacterial cell viability and ultimately leading to bacterial death. Additionally, the dissociation mechanism of the nanocarriers was elucidated for the first time through thermodynamic computational simulation. The nanocarriers dissociate primarily due to H+ attacking the N atom on imidazole, causing the rupture of the Zn-N bond under acidic conditions and at room temperature. Furthermore, honokiol@ZnO-ZIF-8 exhibited potent inhibitory effects against other prominent Solanaceae pathogenic bacteria (Pseudomonas syringae pv. tabaci), demonstrating its broad-spectrum antibacterial activity. Biosafety assessment results indicated that honokiol@ZnO-ZIF-8 exhibited non-phytotoxicity towards tobacco and tomato plants, with its predominant accumulation in the roots and no translocation to aboveground tissues within a short period. This study provides potential application value for the intelligent release of green pesticides. ENVIRONMENT IMPLICATION: The indiscriminate use of agrochemicals poses a significant threat to environmental, ecological security, and sustainable development. Slow-release pesticides offer a green and durable strategy for crop disease control. In this study, we developed a non-phytotoxic and pH-responsive honokiol@ZnO-ZIF-8 nano-bactericide based on the pathogenesis of Ralstonia solanacearum. Thermodynamic simulation revealed the dissociation mechanism of ZIF-8, with different acidity controlling the dissociation rate. This provides a theoretical basis for on-demand pesticide release while reducing residue in the. Our findings provide strong evidence for effective soil-borne bacterial disease control and on-demand pesticide release.


Subject(s)
Anti-Bacterial Agents , Biphenyl Compounds , Lignans , Ralstonia solanacearum , Ralstonia solanacearum/drug effects , Lignans/pharmacology , Lignans/chemistry , Biphenyl Compounds/chemistry , Hydrogen-Ion Concentration , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Zinc Oxide/chemistry , Zinc Oxide/toxicity , Zinc Oxide/pharmacology , Soil Microbiology , Nanoparticles/chemistry , Nanoparticles/toxicity , Plant Diseases/microbiology , Plant Diseases/prevention & control , Reactive Oxygen Species/metabolism , Allyl Compounds , Phenols
9.
Acupunct Med ; 42(3): 146-154, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702866

ABSTRACT

BACKGROUND: Cervical spondylosis (CS) is a prevalent disorder that can have a major negative impact on quality of life. Traditional conservative treatment has limited efficacy, and electroacupuncture (EA) is a novel treatment option. We investigated the application and molecular mechanism of EA treatment in a rat model of cervical intervertebral disk degeneration (CIDD). METHODS: The CIDD rat model was established, following which rats in the electroacupuncture (EA) group received EA. For overexpression of IL-22 or inhibition of JAK2-STAT3 signaling, the rats were injected intraperitoneally with recombinant IL-22 protein (p-IL-22) or the JAK2-STAT3 (Janus kinase 2-signal transducer and activator of transcription protein 3) inhibitor AG490 after model establishment. Rat nucleus pulposus (NP) cells were isolated and cultured. Cell counting kit-8 and flow cytometry were used to analyze the viability and apoptosis of the NP cells. Expression of IL-22, JAK2 and STAT3 was determined using RT-qPCR. Expression of IL-22/JAK2-STAT3 pathway and apoptosis related proteins was detected by Western blotting (WB). RESULTS: EA protected the NP tissues of CIDD rats by regulating the IL-22/JAK2-STAT3 pathway. Overexpression of IL-22 significantly promoted the expression of tumor necrosis factor (TNF)-α, IL-6, IL-1ß, matrix metalloproteinase (MMP)3 and MMP13 compared with the EA group. WB demonstrated that the expression of IL-22, p-JAK2, p-STAT3, caspase-3 and Bax in NP cells of the EA group was significantly reduced and Bcl-2 elevated compared with the model group. EA regulated cytokines and MMP through activation of IL-22/JAK2-STAT3 signaling in CIDD rat NP cells. CONCLUSION: We demonstrated that EA affected apoptosis by regulating the IL-22/JAK2-STAT3 pathway in NP cells and reducing inflammatory factors in the CIDD rat model. The results extend our knowledge of the mechanisms of action underlying the effects of EA as a potential treatment approach for CS in clinical practice.


Subject(s)
Apoptosis , Disease Models, Animal , Electroacupuncture , Interleukin-22 , Interleukins , Intervertebral Disc Degeneration , Janus Kinase 2 , Nucleus Pulposus , Rats, Sprague-Dawley , STAT3 Transcription Factor , Signal Transduction , Animals , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/genetics , Nucleus Pulposus/metabolism , Nucleus Pulposus/cytology , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Rats , Interleukins/metabolism , Interleukins/genetics , Male , Humans , Cervical Vertebrae
10.
Environ Pollut ; 352: 124062, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38701963

ABSTRACT

The leaching process of uranium tailings is a typical water-rock interaction. The release of 226Ra from uranium tailings depends on the nuclides outside the intrinsic properties of uranium tailings on the one hand, and is influenced by the water medium on the other. In this paper, a uranium tailings repository in southern China was used as a research object, and uranium tailings at different depths were collected by drilling samples and mixed to analyze the 226Ra occurrence states. Static dissolution leaching experiments of 226Ra under different pH conditions, solid-liquid ratio conditions, and ionic strength conditions were carried out, and the adsorption and desorption behaviours of 226Ra in five representative stratigraphic media were investigated. The results show that 226Ra has a strong adsorption capacity in representative strata, with adsorption distribution coefficient Kd values ranging from 1.07E+02 to 1.29E+03 (mL/g) and desorption distribution coefficients ranging from 4.97E+02 to 2.71E+03 (mL/g), but the adsorption is reversible. The 226Ra in uranium tailings exists mainly in the residual and water-soluble states, and the release of 226Ra from uranium tailings under different conditions is mainly from the water-soluble and exchangeable state fractions. Low pH conditions, low solid-liquid ratio conditions and high ionic strength conditions are favourable to the release of 226Ra from uranium tailings, so the release of 226Ra from uranium tailings can be reduced by means of adjusting the pH in the tailings and setting up a water barrier. The results of this research have important guiding significance for the management of existing uranium tailings ponds and the control of 226Ra migration in groundwater, which is conducive to guaranteeing the long-term safety, stability and sustainability of uranium mining sites.


Subject(s)
Radium , Uranium , Uranium/chemistry , Adsorption , Radium/analysis , Radium/chemistry , China , Soil Pollutants, Radioactive/analysis , Radiation Monitoring , Mining , Water Pollutants, Radioactive/chemistry , Water Pollutants, Radioactive/analysis
11.
J Asian Nat Prod Res ; : 1-9, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721701

ABSTRACT

Two new triterpenes mayteneri A (1), mayteneri B (2), and seven known compounds (3-9) were isolated from stems of Maytenus hookeri Loes. The chemical structures of compounds 1 and 2 were established by 1D, 2D NMR, HRESIMS analysis, and calculating electronic circular dichroism (ECD). The structures of known compounds 3-9 were determined by comparison of their spectral with those reported. Compounds 4-7 showed significant inhibitory activity for NLRP3 inflammasome, with the IC50 values of 2.36-3.44 µM.

12.
Eur J Oral Sci ; : e12984, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764177

ABSTRACT

The periodontal ligament plays a significant role in orthodontic and masticatory processes. To explicitly investigate the effects of dynamic force amplitude and frequency on the dynamic tensile properties of the periodontal ligament, in vitro tensile experiments were conducted using a dynamic mechanical analysis at various dynamic force amplitudes across a wide frequency range. Storage modulus, loss modulus, and loss factor values were measured. A Maxwell constitutive model based on modulus was established to describe the dynamic mechanical properties of the periodontal ligament. The results showed that the storage modulus ranged from 29.53 MPa to 158.24 MPa, the loss modulus ranged from 3.26 MPa to 76.16 MPa, and the loss factor values all increased with higher frequencies and higher dynamic force amplitudes. Based on the parameters obtained from the fitting results, it is evident that the short-term response has a more pronounced impact on the elastic response of the periodontal ligament than the long-term response. Increasing the dynamic force amplitude and its frequency amplified the viscous effects of the periodontal ligament and enhanced energy dissipation. The proposed constitutive model further demonstrated that the periodontal ligament acts as a viscoelastic biomaterial. These findings have implications for future research on the periodontal ligament.

13.
Cardiovasc Digit Health J ; 5(2): 59-69, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38765618

ABSTRACT

Background: Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of death globally, and early detection of high-risk individuals is essential for initiating timely interventions. The authors aimed to develop and validate a deep learning (DL) model to predict an individual's elevated 10-year ASCVD risk score based on retinal images and limited demographic data. Methods: The study used 89,894 retinal fundus images from 44,176 UK Biobank participants (96% non-Hispanic White, 5% diabetic) to train and test the DL model. The DL model was developed using retinal images plus age, race/ethnicity, and sex at birth to predict an individual's 10-year ASCVD risk score using the pooled cohort equation (PCE) as the ground truth. This model was then tested on the US EyePACS 10K dataset (5.8% non-Hispanic White, 99.9% diabetic), composed of 18,900 images from 8969 diabetic individuals. Elevated ASCVD risk was defined as a PCE score of ≥7.5%. Results: In the UK Biobank internal validation dataset, the DL model achieved an area under the receiver operating characteristic curve of 0.89, sensitivity 84%, and specificity 90%, for detecting individuals with elevated ASCVD risk scores. In the EyePACS 10K and with the addition of a regression-derived diabetes modifier, it achieved sensitivity 94%, specificity 72%, mean error -0.2%, and mean absolute error 3.1%. Conclusion: This study demonstrates that DL models using retinal images can provide an additional approach to estimating ASCVD risk, as well as the value of applying DL models to different external datasets and opportunities about ASCVD risk assessment in patients living with diabetes.

14.
Materials (Basel) ; 17(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38793312

ABSTRACT

This article presents a systematic review of the most cutting-edge research on precast pavement technology for the first time. Firstly, precast pavement is divided into two categories, precast cement concrete pavement and precast carpeted flexible pavement, according to the application of precast technology in pavement engineering. Subsequently, the structural characteristics, advantages, and disadvantages of various precast pavement systems are compared and analyzed; technical problems in precast pavement systems are explained; and future development directions are identified. In addition, the text specifically mentions the great contribution of precast carpeted flexible pavement technology in reducing the harmful effects of asphalt fumes on humans and the environment. This work will promote the application of prefabrication in road engineering and provide suggestions and references for subsequent research.

15.
Sci Rep ; 14(1): 8142, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38584177

ABSTRACT

Disc cutters are essential for full-section hard-rock tunnel boring machines. The performance of these devices directly affects tunnel engineering costs and duration. This paper proposes a sinusoidal variable cross-section (VCS) cutter ring and design method and establishes a digital model. Rock-like materials are simulated with a finite element model, and the model validity is verified via rock simulation mechanics tests. A disc cutter rolling rock simulation model for a linear cutting machine is also established, and simulation tests are performed for single- and three-cutter rolling using sinusoidal VCSs and constant cross-section (CCS) cutter models, respectively. The stress and energy changes for the cutters and rock-like material damage area were compared via simulation, confirming that some sinusoidal VCS cutter rings do less work on rock-like materials and cause larger crushing areas under the same engineering parameters; therefore, these cutter rings have smaller specific energies. The sinusoidal VCS cutter ring performance is 7% greater than that of CCS on average under single-cutter simulation, and the intermediate cutter performance of the intermediate cutter is 9% greater than that of CCS on average under three-cutter simulation. Thus, sinusoidal VCS cutter rings offer improved rock damage performance, and further research and application of this technology will improve the working efficiency of tunnel boring machines.

16.
Front Immunol ; 15: 1374787, 2024.
Article in English | MEDLINE | ID: mdl-38601150

ABSTRACT

Background: Acute pancreatitis (AP) is a severe digestive system disorder with a significant risk of progressing to sepsis, a major cause of mortality. Unraveling the immunological pathways in AP is essential for developing effective treatments, particularly understanding the role of specific immune cell traits in this progression. Methods: Employing a bidirectional two-sample Mendelian Randomization (MR) approach, this study first examined the causal relationship between AP and 731 immune cell traits to identify those significantly associated with AP. Subsequently, we explored the causal associations between 731 immune cell traits and sepsis. The analysis utilized extensive genome-wide association studies (GWAS) summary datasets, with a focus on identifying common immune cell traits with statistically significant causal associations between AP and sepsis. Results: Our investigation identified 44 immune cell traits unidirectionally associated with AP and 36 traits unidirectionally associated with sepsis. Among these, CD127 on CD28+ CD45RA- CD8+ T cells emerged as a common mediator, accounting for 5.296% of the increased risk of sepsis in AP patients. This finding highlights the significant role of specific memory CD8+ T cells in the pathophysiology of AP and its progression to sepsis. Conclusion: This study elucidates the critical role of specific immune cell traits, particularly CD127hi memory CD8+ T cells, in the progression of AP to sepsis. Our findings provide a foundation for future research into targeted immune-modulatory therapies, potentially improving patient outcomes in AP-related sepsis and offering new insights into the complex immunological dynamics of this condition.


Subject(s)
Pancreatitis , Sepsis , Humans , Pancreatitis/genetics , CD8-Positive T-Lymphocytes , Acute Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Sepsis/genetics
17.
J Anim Sci Biotechnol ; 15(1): 50, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38566217

ABSTRACT

BACKGROUND: Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate (HC) diet disrupt the homeostasis of the gut-liver axis in largemouth bass, resulting in decreased intestinal acetate and butyrate level. METHOD: Herein, we had concepted a set of feeding experiment to assess the effects of dietary sodium acetate (SA) and sodium butyrate (SB) on liver health and the intestinal microbiota in largemouth bass fed an HC diet. The experimental design comprised 5 isonitrogenous and isolipidic diets, including LC (9% starch), HC (18% starch), HCSA (18% starch; 2 g/kg SA), HCSB (18% starch; 2 g/kg SB), and HCSASB (18% starch; 1 g/kg SA + 1 g/kg SB). Juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were fed on these diets for 56 d. RESULTS: We found that dietary SA and SB reduced hepatic triglyceride accumulation by activating autophagy (ATG101, LC3B and TFEB), promoting lipolysis (CPT1α, HSL and AMPKα), and inhibiting adipogenesis (FAS, ACCA, SCD1 and PPARγ). In addition, SA and SB decreased oxidative stress in the liver (CAT, GPX1α and SOD1) by activating the Keap1-Nrf2 pathway. Meanwhile, SA and SB alleviated HC-induced inflammation by downregulating the expression of pro-inflammatory factors (IL-1ß, COX2 and Hepcidin1) through the NF-κB pathway. Importantly, SA and SB increased the abundance of bacteria that produced acetic acid and butyrate (Clostridium_sensu_stricto_1). Combined with the KEGG analysis, the results showed that SA and SB enriched carbohydrate metabolism and amino acid metabolism pathways, thereby improving the utilization of carbohydrates. Pearson correlation analysis indicated that growth performance was closely related to hepatic lipid deposition, autophagy, antioxidant capacity, inflammation, and intestinal microbial composition. CONCLUSIONS: In conclusion, dietary SA and SB can reduce hepatic lipid deposition; and alleviate oxidative stress and inflammation in largemouth bass fed on HC diet. These beneficial effects may be due to the altered composition of the gut microbiota caused by SA and SB. The improvement effects of SB were stronger than those associated with SA.

18.
Pest Manag Sci ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578108

ABSTRACT

BACKGROUND: Bacterial virulence factors are involved in various biological processes and mediate persistent bacterial infections. Focusing on virulence factors of phytopathogenic bacteria is an attractive strategy and crucial direction in pesticide discovery to prevent invasive and persistent bacterial infection. Hence, discovery and development of novel agrochemicals with high activity, low-risk, and potent anti-virulence is urgently needed to control plant bacterial diseases. RESULTS: A series of novel ß-hydroxy pyridinium cation decorated pterostilbene derivatives were prepared and their antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo) were systematacially assessed. Among these pterostilbene derivatives, compound 4S exhibited the best antibacterial activity against Xoo in vitro, with an half maximal effective concentration (EC50) value of 0.28 µg mL-1. A series of biochemical assays including scanning electron microscopy, crystal violet staining, and analysis of biofilm formation, swimming motility, and related virulence factor gene expression levels demonstrated that compound 4S could function as a new anti-virulence factor inhibitor by interfering with the bacterial infection process. Furthermore, the pot experiments provided convinced evidence that compound 4S had the high control efficacy (curative activity: 71.4%, protective activity: 72.6%), and could be used to effectively manage rice bacterial leaf blight in vivo. CONCLUSION: Compounds 4S is an attractive virulence factor inhibitor with potential for application in treating plant bacterial diseases by suppressing production of several virulence factors. © 2024 Society of Chemical Industry.

19.
Article in English | MEDLINE | ID: mdl-38624163

ABSTRACT

Two-dimensional (2D) materials have attracted attention due to their excellent optoelectronic properties, but their applications are limited by their defects and vacancies. Surface modification is an effective method to restore their performance. Here, ZrSe2 is modified with conductive polymer p-toluenesulfonic acid (PTSA). It is found that PTSA can obtain electrons of ZrSe2 through the combination of -SO3H and ZrSe2, thus forming interfacial dipoles, which improve the work function of ZrSe2. In addition, -OH in PTSA can effectively fill the Se vacancy in ZrSe2 to form P-type doping, thereby improving its conductivity. ZrSe2 modified by the PTSA material is first used as a hole transport layer (HTL) in organic solar cells (OSCs). The efficiency of OSCs based on the PBDB-T:ITIC and PM6:L8-BO binary active layer with ZrSe2:PTSA as the novel HTL reaches 10.66 and 18.14%, which are obviously higher than the efficiency of OSCs with pure ZrSe2 as the HTL (8.48 and 15.64%). More interestingly, the stability of the device with ZrSe2:PTSA as HTL is significantly better than that of PEDOT:PSS. This study shows that the modification of the organic material can effectively improve the photoelectric performance of ZrSe2 and explores the physical mechanism of the interaction between the organic modifier and 2D materials.

20.
J Med Virol ; 96(4): e29510, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38573018

ABSTRACT

Hepatitis B virus (HBV) infection poses a significant burden on global public health. Unfortunately, current treatments cannot fully alleviate this burden as they have limited effect on the transcriptional activity of the tenacious covalently closed circular DNA (cccDNA) responsible for viral persistence. Consequently, the HBV life cycle should be further investigated to develop new anti-HBV pharmaceutical targets. Our previous study discovered that the host gene TMEM203 hinders HBV replication by participating in calcium ion regulation. The involvement of intracellular calcium in HBV replication has also been confirmed. In this study, we found that transient receptor potential vanilloid 4 (TRPV4) notably enhances HBV reproduction by investigating the effects of several calcium ion-related molecules on HBV replication. The in-depth study showed that TRPV4 promotes hepatitis B core/capsid protein (HBc) protein stability through the ubiquitination pathway and then promotes the nucleocapsid assembly. HBc binds to cccDNA and reduces the nucleosome spacing of the cccDNA-histones complex, which may regulate HBV transcription by altering the nucleosome arrangement of the HBV genome. Moreover, our results showed that TRPV4 promotes cccDNA-dependent transcription by accelerating the methylation modification of H3K4. In conclusion, TRPV4 could interact with HBV core protein and regulate HBV during transcription and replication. These data suggest that TRPV4 exerts multifaceted HBV-related synergistic factors and may serve as a therapeutic target for CHB.


Subject(s)
Antineoplastic Agents , Hepatitis B , Humans , Ubiquitin , Capsid , Capsid Proteins , Hepatitis B virus/genetics , TRPV Cation Channels/genetics , Calcium , Nucleosomes , Methylation , Membrane Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...