Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 943: 173273, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38823698

ABSTRACT

This study comprehensively and critically reviews active fire detection advancements in remote sensing from 1975 to the present, focusing on two main perspectives: datasets and corresponding instruments, and detection algorithms. The study highlights the increasing role of machine learning, particularly deep learning techniques, in active fire detection. Looking forward, the review outlines current challenges and future research opportunities in remote sensing for active fire detection. These include exploring data quality management and multi-modal learning, developing spatiotemporally explicit models, investigating self-supervised learning models, improving explainable and interpretable models, integrating physical-process based models with machine learning, and building digital twins to replicate wildfire dynamics and perform what-if scenario analysis. The review aims to serve as a valuable resource for informing natural resource management and enhancing environmental protection efforts through the application of remote sensing technology.

2.
Opt Express ; 31(22): 35565-35582, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-38017724

ABSTRACT

The Yunnan-Guizhou Plateau (YGP) is an important ecological region in southwestern China with frequent and severe droughts affecting its vegetation and ecosystem. Many studies have used vegetation indices to monitor drought effects on vegetation across the entire ecosystem. However, the drought response of different vegetation types in the YGP is unclear. This study used solar-induced chlorophyll fluorescence (SIF) and normalized difference vegetation Index (NDVI) data to monitor different vegetation types. The results showed that cropland was most sensitive and woody savanna was most resistant to drought. SIF had a stronger correlation with drought than NDVI, indicating its potential for vegetation monitoring.


Subject(s)
Droughts , Ecosystem , China , Fluorescence , Chlorophyll
3.
Opt Express ; 29(1): 400-414, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33362125

ABSTRACT

At present, many studies have mainly focused on analyzing the sensitivity and correlation to select characteristic bands. However, the interrelations between biochemical parameters were ignored, which may significantly influence the accuracy of biochemical concentration retrieval. The study aims to propose a new band selection method and to focus on the improving magnitude of characteristic band combination in leaf trait estimation when taking interrelations among different traits into consideration. Thus, in this study, firstly a ranking- and searching-based method considering the sensitivity and correlation between different wavelengths, which can enhance the reliability of spectral band selection, was proposed to select a subset of characteristic bands for leaf structure index and five leaf biochemical parameters (including chlorophyll (Chl), carotenoid (Car), leaf dry matter per area (LMA), equivalent water thickness (EWT), and anthocyanin (Anth)) based on the PROSPECT-D model. These characteristic bands were then validated based on a physical model for retrieving five biochemical properties using one synthetic dataset and six experimental datasets on leaf-level spectra. Secondly, and more innovatively, to explore interrelations among different biochemical parameters, trait-trait band combinations were adopted to retrieve and analyze how the five biochemical participants above affected each other. The results demonstrated that the combination of LMA (809 and 2278 nm), EWT (1386, 1414, and 1894 nm) is more beneficial in LMA and EWT estimation than respective retrieval: LMA-EWT band combination retrieval improves R2 by 0.5782 and 0.1824 in two datasets, respectively, compared with solely LMA characteristic bands retrieval. What's more, the accuracy of Chl, EWT, Car, and Anth estimation can be also improved when considering interrelations between biochemical parameters. The experimental results show that the ranking- and searching-based method is an effective and efficient way to select a set of spectral bands related to the foliar information about plant traits, and trait-trait combinations, which focus on exploring latent interrelations between leaf traits, are useful in furthering improve retrieval accuracy. This research will provide notably advanced insight into identifying the spectral responses of biochemical traits in foliage and canopies.


Subject(s)
Anthocyanins/analysis , Carotenoids/analysis , Chlorophyll/analysis , Models, Biological , Plant Leaves/chemistry , Water/analysis , Ecosystem , Remote Sensing Technology , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...