Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Reprod Sci ; 225: 106691, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33454617

ABSTRACT

Egg yolk, a major semen extender constituent, lacks a defined composition, therefore, there are biosecurity concerns with use of egg yolk. Cryopreservation of bull semen without inclusion of animal protein in the semen extender, therefore, is an important consideration. Cholesterol may be delivered and incorporated into the sperm plasma membrane by cyclodextrins to protect sperm during cryopreservation. The aim of this study was to determine suitability of a cholesterol-cyclodextrin semen extender, without inclusion of egg yolk, for cryopreservation of bull semen. Bull semen was collected and cryopreserved in either egg yolk or with inclusions of three different concentrations of cholesterol-cyclodextrin complex (0.5, 1 or 2 mg/mL semen) in Tris-glycerol (TG) extender. Sperm motion characteristics examined using the computer-assisted sperm analysis, and plasma membrane and acrosome integrity examined using flow cytometry, were similar for all extenders. The inclusion of the greatest concentration of cholesterol-cyclodextrin complex (2 mg/mL semen) followed by dilution in TG extender resulted in lesser pregnancy rates (P <  0.05). There was a pregnancy rate of as great as 56 % when sperm cryopreserved in 0.5 mg/mL cholesterol-cyclodextrin Tris-glycerol extender were used for artificial insemination following imposing of a hormonal treatment regimen for synchrony of timing of ovarian functions among cows for conducting fixed-time artificial insemination (FTAI). Results indicate cholesterol-cyclodextrin Tris-glycerol extender, with a chemically defined composition and without inclusion of egg yolk, may be used to cryopreserve bull sperm with there being acceptable pregnancy rates when this semen is used for FTAI.


Subject(s)
Cattle , Cholestyramine Resin/pharmacology , Cyclodextrins/pharmacology , Semen Preservation/veterinary , Animals , Cholestyramine Resin/chemistry , Cryopreservation , Cyclodextrins/chemistry , Egg Yolk , Estrus Synchronization/drug effects , Female , Freezing , Insemination, Artificial , Letrozole/pharmacology , Male , Pregnancy , Progesterone/pharmacology , Spermatozoa/drug effects
2.
Theriogenology ; 152: 156-164, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32422415

ABSTRACT

Successful cryopreservation of bison semen is fundamental for restoration of genetic diversity in Canada's wood bison. Conventional bovine semen extenders contain animal products, such as egg yolk and milk, which are undesirable because of biosecurity risks and undefined composition. In this study, we examined the efficacy of an exogenous protein-free extender containing cholesterol-cyclodextrin complex (CC) to cryopreserve bison semen. The study also provided an opportunity to determine the effectiveness of different ovulation synchronization protocols for fixed-time artificial insemination in bison. Semen was collected from wood bison bulls via electroejaculation and cryopreserved in either Tris-egg yolk-glycerol (called 'TEYG') extender or pretreated with CC (2 mg/mL semen) and diluted in Tris-glycerol (collectively called 'CC-TG') extender. Post-thaw sperm motion characteristics and in vitro fertilization of cattle oocytes confirmed that CC alone without egg yolk protected bison sperm during cryopreservation process. In the first fertility trial, however, no pregnancy was obtained following fixed-time artificial insemination of bison cows with CC-TG extender. In a follow-up trial, low concentration of CC (1 mg/mL semen) resulted in better post-thaw sperm motion characteristics, fertility rate, and birth of live calves following fixed-time artificial insemination. Results showed that 1 mg CC/mL semen completely replaced egg yolk in bison semen extender. In addition, both follicular ablation and steroid treatment protocols provided ovulation synchrony to permit successful application of fixed-time artificial insemination in bison. This is the first report on the birth of live bison calves following fixed-time artificial insemination using semen cryopreserved in a defined extender.


Subject(s)
Bison/physiology , Cryopreservation/veterinary , Insemination, Artificial/veterinary , Proteins/pharmacology , Semen Preservation/veterinary , Semen/drug effects , Animals , Fertility , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...