Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(13): 4622-4630, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-36966511

ABSTRACT

Extremely water-repellent surfaces with low sliding angle (SA) have been obtained with a facile single-step sol-gel strategy via co-condensation of tetraethoxysilane (TEOS) and hexadecyltrimethoxysilane (HDTMS) in basic media with an efficient self-cleaning property. We investigated the effect of the molar ratio of HDTMS and TEOS on the properties of the modified silica-coated poly(ethylene terephthalate) (PET) film. A high water contact angle (WCA) of 165° and a low SA of 1.35° were obtained at a molar ratio of 0.125. The dual roughness pattern for the low SA was developed by a one-step coating of the modified silica with a molar ratio of 0.125. The evolution of the surface to the dual roughness pattern by nonequilibrium dynamics depended on the size and shape factor of modified silica. The primitive size and the shape factor of the organosilica with a molar ratio of 0.125 were 70 nm and 0.65, respectively. We also presented a new method to determine the superficial surface friction (ζ) of the superhydrophobic surface. The ζ was a physical parameter that characterized the slip and rolling behavior of water droplets on the superhydrophobic surface along with the equilibrium property WCA and the static frictional property SA.

2.
Polymers (Basel) ; 14(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36559712

ABSTRACT

According to reported polymer-based magnetoelectric (ME) laminates, which generate voltage via an external magnetic field, a binder is indispensable for the adhesion between phases. However, if the binder is excluded, the ME response is expected to improve via efficient strain transfer from the magnetostrictive phase to the piezoelectric phase. Nevertheless, an understanding of the binderless state has not yet been addressed in polymer-based ME laminates. In this study, cellulose/Ni (CN) laminates were designed to obtain binderless polymer-based ME laminates. The surface properties of Ni foil desirable for the anchoring effect and the electrostatic interactions required for binderless states were determined via heat treatment of the Ni substrate. Moreover, to confirm the potential of the binderless laminate in ME applications, the ferromagnetic and ferroelectric properties of the CN laminates were recorded. Consequently, the CN laminates exhibited remnant and saturation magnetizations of 29.5 emu/g and 55.2 emu/g, respectively. Furthermore, the significantly increased remnant and saturation polarization of the CN laminates were determined to be 1.86 µC/cm2 and 0.378 µC/cm2, an increase of approximately 35-fold and 5.56-fold, respectively, compared with a neat cellulose film. The results indicate that multiferroic binderless CN laminates are excellent candidates for high-response ME applications.

3.
Polymers (Basel) ; 13(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071659

ABSTRACT

In the last decade, magnetoelectric (ME) polymer films have been developed by including zero-dimensional or one-dimensional magnetostrictive fillers in a piezoelectric polymer matrix. Existing reports on ME polymer films reveal that the shape of the magnetostrictive fillers is a critical determinant of the polymeric phase conformation, strain transfer between the piezoelectric and magnetostrictive phases, and dipole alignment in the films. In this study, to investigate the effect of two-dimensional (2D) magnetostrictive fillers on piezoelectric, magnetic, and magnetoelectric responses, 3-2 type ME films were prepared using CoFe2O4-intercalated graphene oxide (CFO-i-GO) fillers and poly(vinylidene fluoride) (PVDF) polymers. The 2D fillers of CFO-i-GO were hydrothermally synthesized by CFO intercalation into the interlayers of GO sheets with different lateral sizes, which were controlled by ultrasonication treatment. It was found that the large-lateral-size GO (LGO), medium-lateral-size GO (MGO), and small-lateral-size GO (SGO) fillers in the PVDF-based ME films exhibited a lateral size effect on CFO intercalation, polymeric phase conformation, dipole alignment, and magnetoelectric responses. A maximum ME coefficient (αME) of 3.0 mV/cm∙Oe was achieved with a strong linearity (r2) of 0.9992 at an off-resonance frequency (f) of 1 kHz and applied direct current (dc) magnetic field (Hdc) of ± 1000 Oe. The 3-2 type polymer-based ME films with reliable ME responses have potential for use in high-feasibility ME devices for biomedical sensing applications.

4.
Polymers (Basel) ; 12(11)2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33167528

ABSTRACT

In the last decade, particulate matter (PM) has gradually become a serious public health issue due to its harmful impact on the human body. In this study, we report a novel filtration system for high PM capturing, based on the magnetoelectric (ME) effect that induces an effective surface charge in membrane filters. To elucidate the ME effect on PM capturing, we prepared electrospun poly(vinylidene fluoride)(PVDF)/CoFe2O4(CFO) membranes and investigated their PM capturing efficiency. After electrical poling under a high electric field of 10 kV/mm, PM-capturing efficiencies of the poled-PVDF/CFO membrane filters were improved with carbon/fluorine(C/F) molar ratios of C/F = 4.81 under Hdc = 0 and C/F = 7.01 under Hdc = 700 Oe, respectively. The result illustrates that electrical poling and a dc magnetic field could, respectively, enhance the surface charge of the membrane filters through (i) a strong beta-phase alignment in PVDF (poling effect) and (ii) an efficient shape change of PVDF/CFO membranes (magnetostriction effect). The diffusion rate of a water droplet on the PVDF/CFO membrane surface is reduced from 0.23 to 0.05 cm2/s by covering the membrane surface with PM. Consequently, the PM capturing efficiency is dramatically improved up to 175% from ME membranes with the poling process and applying a magnetic field. Furthermore, the PM was successfully captured on the prototype real mask derived from the magnetoelectric effect induced by a permanent magnet with a diameter of 2 cm without any external power.

5.
Materials (Basel) ; 12(7)2019 Mar 30.
Article in English | MEDLINE | ID: mdl-30935041

ABSTRACT

In this study, magnetostrictive powders of CoFe2O4 (CFO) and Zn-substituted CoFe2O4 (CZFO, Zn = 0.1, 0.2) were synthesized in order to decrease the optimal dc magnetic field (Hopt.), which is required to obtain a reliable magnetoelectric (ME) voltage in a 3-0 type particulate composite system. The CFO powders were prepared as a reference via a typical solid solution process. In particular, two types of heterogeneous CZFO powders were prepared via a stepwise solid solution process. Porous-CFO and dense-CFO powders were synthesized by calcination in a box furnace without and with pelletizing, respectively. Then, heterogeneous structures of pCZFO and dCZFO powders were prepared by Zn-substitution on calcined powders of porous-CFO and dense-CFO, respectively. Compared to the CFO powders, the heterogeneous pCZFO and dCZFO powders exhibited maximal magnetic susceptibilities (χmax) at lower Hdc values below ±50 Oe and ±10 Oe, respectively. The Zn substitution effect on the Hdc shift was more dominant in dCZFO than in pCZFO. This might be because the Zn ion could not diffuse into the dense-CFO powder, resulting in a more heterogeneous structure inducing an effective exchange-spring effect. As a result, ME composites consisting of 0.948Na0.5K0.5NbO3⁻0.052LiSbO3 (NKNLS) with CFO, pCZFO, and dCZFO were found to exhibit Hopt. = 966 Oe (NKNLS-CFO), Hopt. = 689⁻828 Oe (NKNLS-pCZFO), and Hopt. = 458⁻481 Oe (NKNLS-dCZFO), respectively. The low values of Hopt. below 500 Oe indicate that the structure of magnetostrictive materials should be considered in order to obtain a minimal Hopt. for high feasibility of ME composites.

6.
Nanotechnology ; 29(23): 235602, 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-29582775

ABSTRACT

Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO2 epitaxial growth and BaTiO3 conversion. Through the TiO2 epitaxial growth on FTO substrate, (001) oriented TiO2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO2 NBA was conducted to enlarge the surface area for effective Ba2+ ion diffusion during the perovskite conversion process from TiO2 to BaTiO3. The final structure of perovskite BaTiO3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

7.
ACS Appl Mater Interfaces ; 10(13): 11018-11025, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29309126

ABSTRACT

Enhanced and self-biased magnetoelectric (ME) coupling is demonstrated in a laminate heterostructure comprising 4 µm-thick Pb(Zr,Ti)O3 (PZT) film deposited on 50 µm-thick flexible nickel (Ni) foil. A unique fabrication approach, combining room temperature deposition of PZT film by granule spray in vacuum (GSV) process and localized thermal treatment of the film by laser radiation, is utilized. This approach addresses the challenges in integrating ceramic films on metal substrates, which is often limited by the interfacial chemical reactions occurring at high processing temperatures. Laser-induced crystallinity improvement in the PZT thick film led to enhanced dielectric, ferroelectric, and magnetoelectric properties of the PZT/Ni composite. A high self-biased ME response on the order of 3.15 V/cm·Oe was obtained from the laser-annealed PZT/Ni film heterostructure. This value corresponds to a ∼2000% increment from the ME response (0.16 V/cm·Oe) measured from the as-deposited PZT/Ni sample. This result is also one of the highest reported values among similar ME composite systems. The tunability of self-biased ME coupling in PZT/Ni composite has been found to be related to the demagnetization field in Ni, strain mismatch between PZT and Ni, and flexural moment of the laminate structure. The phase-field model provides quantitative insight into these factors and illustrates their contributions toward the observed self-biased ME response. The results present a viable pathway toward designing and integrating ME components for a new generation of miniaturized tunable electronic devices.

8.
Nanotechnology ; 24(22): 225303, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23637024

ABSTRACT

One-dimensional (1D) piezoelectric nanostructures have attracted significant attention for a broad range of applications including optoelectronics, thermoelectrics, electrochemical and electromechanical converters. We demonstrate the synthesis of 1D nanostructures based upon Pb(Zr0.52Ti0.48)O3 (PZT) on conductive substrates via sol-gel template synthesis. The vertically aligned PZT nanostructures with heights around one micron were synthesized by vacuum infiltration of sol-gel precursors into highly ordered cylindrical pores of anodized aluminum oxide templates. The 1D nanostructures were developed on large scale platinized silicon wafers and exhibited dense rod-like structure with a uniform diameter of 90 nm and an aspect ratio of 10. Scanning probe microscopy conducted on individual nanorods demonstrated good electromechanical properties with a high piezoelectric magnitude of 41 pm V(-1). We believe that this study opens the possibility of developing high performance nanoscale piezoelectric sensors and transducers.


Subject(s)
Nanotubes/chemistry , Nanotubes/ultrastructure , Oxides/chemistry , Titanium/chemistry , Zirconium/chemistry , Electricity , Nanotechnology , Phase Transition , Transducers
9.
Materials (Basel) ; 4(4): 651-702, 2011 Apr 06.
Article in English | MEDLINE | ID: mdl-28879946

ABSTRACT

Magnetoelectric (ME) composites that simultaneously exhibit ferroelectricity and ferromagnetism have recently gained significant attention as evident by the increasing number of publications. These research activities are direct results of the fact that multiferroic magnetoelectrics offer significant technological promise for multiple devices. Appropriate choice of phases with co-firing capability, magnetostriction and piezoelectric coefficient, such as Ni-PZT and NZFO-PZT, has resulted in fabrication of prototype components that promise transition. In this manuscript, we report the properties of Ni-PZT and NZFO-PZT composites in terms of ME voltage coefficients as a function of frequency and magnetic DC bias. In order to overcome the problem of toxicity of lead, we have conducted experiments with Pb-free piezoelectric compositions. Results are presented on the magnetoelectric performance of Ni-NKN, Ni-NBTBT and NZFO-NKN, NZFO-NBTBT systems illustrating their importance as an environmentally friendly alternative.

SELECTION OF CITATIONS
SEARCH DETAIL
...