Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1181263, 2023.
Article in English | MEDLINE | ID: mdl-37274110

ABSTRACT

Atezolizumab (a PD-L1 inhibitor) has shown remarkable efficacy and tolerability in various cancer types. Despite its efficacy and safety, atezolizumab monotherapy has limitations, such as acquired resistance and adverse events. Bojungikki-tang (BJIKT) is an herbal decoction widely prescribed in Asian countries and used to treat cancer-related symptoms including fatigue, appetite loss, gastrointestinal disorders, and other side effects from cancer therapy. Due to its immunomodulatory effects, Bojungikki-tang has been investigated as a combined treatment with anticancer agents. We evaluated the potential drug-drug interaction (DDI) between Bojungikki-tang and the anti-PD-L1 antibody based on the Food and Drug Administration (FDA) guidelines. In the study, we conducted an in vivo drug-drug interaction study using a syngeneic mouse model of CMT-167 in C57BL/6. We then determined the antibody concentrations to evaluate the pharmacokinetic (PK) drug-drug interaction and measured variable biomarkers related to therapeutic efficacy and immune response. The pharmacodynamic (PD) drug-drug interaction study investigated changes in response between anti-PD-L1 antibody monotherapy and combination therapy. Using the pharmacokinetic and pharmacodynamic data, we conducted a statistical analysis to assess drug-drug interaction potential. In the presence of Bojungikki-tang, the pharmacokinetic characteristics of the anti-PD-L1 antibody were not changed. This study suggested that combination treatment with Bojungikki-tang and atezolizumab is a safe treatment option for non-small cell lung cancer. Clinical studies are warranted to confirm this finding.

2.
CPT Pharmacometrics Syst Pharmacol ; 11(11): 1430-1442, 2022 11.
Article in English | MEDLINE | ID: mdl-36193622

ABSTRACT

Rivaroxaban (RIV; Xarelto; Janssen Pharmaceuticals, Beerse, Belgium) is one of the direct oral anticoagulants. The drug is a strong substrate of cytochrome P450 (CYP) enzymes and efflux transporters. This study aimed to develop a physiologically-based pharmacokinetic (PBPK) model for RIV. It contained three hepatic metabolizing enzyme reactions (CYP3A4, CYP2J2, and CYP-independent) and two active transporter-mediated transfers (P-gp and BCRP transporters). To illustrate the performance of the developed RIV PBPK model on the prediction of drug-drug interactions (DDIs), carbamazepine (CBZ) was selected as a case study due to the high DDI potential. Our study results showed that CBZ significantly reduces the exposure of RIV. The area under the concentration-time curve from zero to infinity (AUCinf ) of RIV was reduced by 35.2% (from 2221.3 to 1438.7 ng*h/ml) and by 25.5% (from 2467.3 to 1838.4 ng*h/ml) after the first dose and at the steady-state, respectively, whereas the maximum plasma concentration (Cmax ) of RIV was reduced by 37.7% (from 266.3 to 166.1 ng/ml) and 36.4% (from 282.3 to 179.5 ng/ml), respectively. The developed PBPK model of RIV could be paired with PBPK models of other interested perpetrators to predict DDI profiles. Further studies investigating the extent of DDI between CBZ and RIV should be conducted in humans to gain a full understanding of their safety and effects.


Subject(s)
Models, Biological , Rivaroxaban , Humans , Rivaroxaban/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Neoplasm Proteins , Drug Interactions , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme System/metabolism , Carbamazepine
3.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34358080

ABSTRACT

MT921 is a new injectable drug developed by Medytox Inc. to reduce submental fat. Cholic acid is the active pharmaceutical ingredient, a primary bile acid biosynthesized from cholesterol, endogenously produced by liver in humans and other mammals. Although individuals treated with MT921 could be administered with multiple medications, such as those for hypertension, diabetes, and hyperlipidemia, the pharmacokinetic drug-drug interaction (DDI) has not been investigated yet. Therefore, we studied in vitro against drug-metabolizing enzymes and transporters. Moreover, we predicted the potential DDI between MT921 and drugs for chronic diseases using physiologically-based pharmacokinetic (PBPK) modeling and simulation. The magnitude of DDI was found to be negligible in in vitro inhibition and induction of cytochrome P450s and UDP-glucuronosyltransferases. Organic anion transporting polypeptide (OATP)1B3, organic anion transporter (OAT)3, Na+-taurocholate cotransporting polypeptide (NTCP), and apical sodium-dependent bile acid transporter (ASBT) are mainly involved in MT921 transport. Based on the result of in vitro experiments, the PBPK model of MT921 was developed and evaluated by clinical data. Furthermore, the PBPK model of amlodipine was developed and evaluated. PBPK DDI simulation results indicated that the pharmacokinetics of MT921 was not affected by the perpetrator drugs. In conclusion, MT921 could be administered without a DDI risk based on in vitro study and related in silico simulation. Further clinical studies are needed to validate this finding.

4.
Pharmaceutics ; 12(11)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143037

ABSTRACT

Rivaroxaban (RIV) is commonly prescribed with carbamazepine or phenytoin (CBZ/PHT) in post-stroke seizure or post-stroke epilepsy patients. Although adverse events have been reported in several previous studies when they are coadministered, there are no studies of the interactions between these drugs. Therefore, our study was conducted to solve this lack of information. The potential effects of CBZ/PHT were investigated by comparing the pharmacokinetic (PK) and pharmacodynamic (PD) parameters of RIV between the control group (RIV alone) and the test groups (RIV administered with CBZ/PHT) in rats using the noncompartmental analysis (NCA) and the compartmental model approach. The NCA results indicate that AUCt of RIV decreased by 57.9% or 89.7% and Cmax of RIV decreased by 43.3% or 70.0% after administration of CBZ/PHT, respectively. In addition, both CBZ and PHT generally reduced the effects of RIV on the prothrombin times of the blood samples. PK profiles of RIV were most properly described by a two-compartment disposition model with a mixed first- and zero-order absorption kinetics and a first-order elimination kinetics. The compartmental model approach showed that a 211% or 1030% increase in CL/F of RIV and a 33.9% or 43.4% increase in D2 of RIV were observed in the test groups by the effects of CBZ/PHT, respectively. In conclusion, CBZ and PHT significantly reduced RIV exposure and therefore reduced the therapeutic effects of RIV. Consequently, this might result in adverse events due to insufficient RIV concentration to attain its therapeutic effects. Further studies are needed to validate this finding.

SELECTION OF CITATIONS
SEARCH DETAIL
...