Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Nanoscale ; 13(35): 15058-15066, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34533160

ABSTRACT

Intrinsically, free water molecules are a colourless liquid. If it is colourful, why and how does it emit the bright colours? We provided direct evidence that when water was trapped into the sub-nanospace of zeolites, the structural water molecules (SWs) exhibited strong tunable photoluminescence (PL) emissions from blue to red colours with unprecedented ultra-long lifetimes up to the second scale at liquid nitrogen temperature. Further controlled experiments and combined characterizations by time-resolved steady-state and ultra-fast femtosecond (fs) transient optical spectroscopy showed that the singly adsorbed hydrated hydroxide complex {OH-·H2O} as SWs in the confined nanocavity is the true emitter centre, whose PL efficiency strongly depends on the type and stability of the SWs, which is dominated by H-bond interactions, such as the solvent effect, pH value and operating temperature. The emission of SWs exhibits the characteristic of topological excitations (TAs) due to the many-body quantum electron correlations in confined nanocavities, which differs from the local excitation of organic chromophores. Our model not only elucidates the origin of the PL of metal nanoclusters (NCs), but also provides a completely new insight to understand the nature of heterogeneous catalysis and interface bonding (or state) at the molecule level, beyond the metal-centred d band theory.

2.
Nanomaterials (Basel) ; 10(2)2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32033058

ABSTRACT

Recently, metal nanoclusters (MNCs) emerged as a new class of luminescent materials and have attracted tremendous interest in the area of luminescence-related applications due to their excellent luminous properties (good photostability, large Stokes shift) and inherent good biocompatibility. However, the origin of photoluminescence (PL) of MNCs is still not fully understood, which has limited their practical application. In this mini-review, focusing on the origin of the photoemission emission of MNCs, we simply review the evolution of luminescent mechanism models of MNCs, from the pure metal-centered quantum confinement mechanics to ligand-centered p band intermediate state (PBIS) model via a transitional ligand-to-metal charge transfer (LMCT or LMMCT) mechanism as a compromise model.

3.
Nanoscale ; 12(6): 3657-3662, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32016276

ABSTRACT

The well-known Stöber method has been widely used to synthesize nonporous silica nanospheres (NPs), however, in the absence of surfactant templates, the synthesis of mesoporous silica nanospheres (MSNs) has not been achieved. Herein, in the absence of organic surfactant templates, by a simple premixing of three components tetraethoxysilane-water-ethanol (TEOS-H2O-EtOH) with a precise molar ratio, the parent silica nanoparticles with a low condensation degree and controlled particle size can be readily obtained. Subsequently, via a simple two-step post-treatment, the obtained MSNs exhibited a high surface area (ca. 500 m2 g-1), accessible mesopores (3.0 nm), and a large pore volume (0.87 mL g-1), similar to those of MCM-41 and SBA-15 silicas. The unique self-templating role of the 'pre-Ouzo' effect of ternary surfactant-free TEOS-H2O-EtOH systems was proposed to understand the formation of mesoporosity.

4.
Nanoscale Adv ; 2(5): 1792-1810, 2020 May 19.
Article in English | MEDLINE | ID: mdl-36132521

ABSTRACT

The interest in the design and controlled fabrication of dendritic mesoporous silica nanospheres (DMSNs) emanates from their widespread application in drug-delivery carriers, catalysis and nanodevices owing to their unique open three-dimensional dendritic superstructures with large pore channels and highly accessible internal surface areas. A variety of synthesis strategies have been reported, but there is no basic consensus on the elucidation of the pore structure and the underlying formation mechanism of DMSNs. Although all the DMSNs show a certain degree of similarity in structure, do they follow the same synthesis mechanism? What are the exact pore structures of DMSNs? How did the bimodal pore size distributions kinetically evolve in the self-assembly? Can the relative fractions of small mesopores and dendritic large pores be precisely adjusted? In this review, by carefully analysing the structures and deeply understanding the formation mechanism of each reported DMSN and coupling this with our research results on this topic, we conclude that all the DMSNs indeed have the same mesostructures and follow the same dynamic self-assembly mechanism using microemulsion droplets as super templates in the early reaction stage, even without the oil phase.

5.
Chemistry ; 24(2): 478-486, 2018 Jan 09.
Article in English | MEDLINE | ID: mdl-29105872

ABSTRACT

Mesoporous nanospheres are highly regarded for their applications in nanomedicine, optical devices, batteries, nanofiltration, and heterogeneous catalysis. In the last field, the dendritic morphology, which favors molecular diffusion, is a very important morphology known for silica, but not yet for carbon. A one-pot, easy, and scalable co-sol-gel route by using the triphasic resol-surfactant-silica system is shown to yield the topologies of dendritic and core-shell-corona mesoporous sister nanospheres by inner radial phase speciation control on a mass-transfer-limited process, depending on the relative polycondensation rates of the resol polymer and silica phases. The trick was the use of polyolamines with different catalytic activities on each hard phase polycondensation. The self-entanglement of phases is produced at the {O- , S+ , I- } organic-surfactant-inorganic interface. Mono- and biphasic mesoporous sister nanospheres of carbon and/or silica are derivatized from each mother nanospheres and called "syntaxic" because of similar sizes and mirrored morphologies. Comparing these "false twins", or yin and yang mesoporous nanospheres, functionalized by sulfonic groups provides evidence of the superiority of the dendritic topologies and the absence of a shell on the diffusion-controlled catalytic alkylation of m-cresol.

6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(12): 3973-7, 2016 Dec.
Article in Chinese | MEDLINE | ID: mdl-30235504

ABSTRACT

Glutathione (GSH) is an important three-peptide molecule, which has the functions of antioxidation and detoxification, and plays a crucial role in the fields of biology, medicine and food science. It is involved in many important biochemical reactions in cells and body fluid, and the changes of GSH content reflect the specific health problems of human body. Current methods of GSH detection are always complicated, time-consuming and expensive instrument depended, such as surface enhanced Raman spectroscopy (SERS), electrochemical analysis, high performance liquid chromatography (HPLC) and so on. The probe's photochemical properties can be modified by the reaction between GSH and nanoclusters, which will result in the changes of fluorescence intensity and wavelength. In this paper, a new method to realize precise and rapid GSH detection is developed by using silver na-noclusters as a fluorescent probe, and simultaneously measures the probe's fluorescence intensity and wavelength. The synthesis of the fluorescence probe reported in this paper possesses the advantages of steps-simple and pollution free, and the GSH detection method has faster response, more accurate measurement and smaller relative error over the traditional methods. The good specificity of GSH detection among other molecules with the similar structure is further proved in control group experiments by comparing the differences of their fluorescence intensities and wavelength. The measurement accuracy is fully assured due to the insensitivity of the probe to a variety of salt ions and amino acids. This technique can be further employed in the intracellular detection and imaging of GSH.


Subject(s)
Nanostructures , Electrochemical Techniques , Fluorescence , Fluorescent Dyes , Glutathione , Humans , Silver , Spectrum Analysis, Raman
7.
ACS Appl Mater Interfaces ; 6(24): 22655-65, 2014 Dec 24.
Article in English | MEDLINE | ID: mdl-25454255

ABSTRACT

The synthesis of highly uniform mesoporous silica nanospheres (MSNs) with dendritic pore channels, particularly ones with particle sizes below 200 nm, is extremely difficult and remains a grand challenge. By a combined synthetic strategy using imidazolium ionic liquids (ILs) with different alkyl lengths as cosurfactants and Pluronic F127 nonionic surfactants as inhibitors of particle growth, the preparation of dendritic MSNs with controlled diameter between 40 and 300 nm was successfully realized. An investigation of dendritic MSNs using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen physisorption revealed that the synthesis of dendritic MSNs at larger size (100-300 nm) strongly depends on the alkyl lengths of cationic imidazolium ILs; while the average size of dendritic MSNs can be controlled within the range of 40-100 nm by varying the amount of Pluronic F127. The Au@MSNs can be used as a catalyst for the reduction of 4-nitrophenol by NaBH4 into 4-aminophenol and exhibit excellent catalytic performance. The present discovery of the extended synthesis conditions offers reproducible, facile, and large-scale synthesis of the monodisperse spherical MSNs with precise size control and, thus, has vast prospects for future applications of ultrafine mesostructured nanoparticle materials in catalysis and biomedicine.


Subject(s)
Crystallization/methods , Ionic Liquids/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Nanopores/ultrastructure , Poloxamer/chemistry , Materials Testing , Particle Size , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...