Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 589(7843): 577-581, 2021 01.
Article in English | MEDLINE | ID: mdl-33239786

ABSTRACT

Choosing a mate is one of the most consequential decisions a female will make during her lifetime. A female fly signals her willingness to mate by opening her vaginal plates, allowing a courting male to copulate1,2. Vaginal plate opening (VPO) occurs in response to the male courtship song and is dependent on the mating status of the female. How these exteroceptive (song) and interoceptive (mating status) inputs are integrated to regulate VPO remains unknown. Here we characterize the neural circuitry that implements mating decisions in the brain of female Drosophila melanogaster. We show that VPO is controlled by a pair of female-specific descending neurons (vpoDNs). The vpoDNs receive excitatory input from auditory neurons (vpoENs), which are tuned to specific features of the D. melanogaster song, and from pC1 neurons, which encode the mating status of the female3,4. The song responses of vpoDNs, but not vpoENs, are attenuated upon mating, accounting for the reduced receptivity of mated females. This modulation is mediated by pC1 neurons. The vpoDNs thus directly integrate the external and internal signals that control the mating decisions of Drosophila females.


Subject(s)
Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Mating Preference, Animal , Neural Pathways/cytology , Neural Pathways/physiology , Neurons/physiology , Acoustic Stimulation , Animals , Auditory Pathways , Copulation , Courtship , Female , Male , Optogenetics , Vocalization, Animal
2.
Elife ; 92020 12 14.
Article in English | MEDLINE | ID: mdl-33315010

ABSTRACT

Making inferences about the computations performed by neuronal circuits from synapse-level connectivity maps is an emerging opportunity in neuroscience. The mushroom body (MB) is well positioned for developing and testing such an approach due to its conserved neuronal architecture, recently completed dense connectome, and extensive prior experimental studies of its roles in learning, memory, and activity regulation. Here, we identify new components of the MB circuit in Drosophila, including extensive visual input and MB output neurons (MBONs) with direct connections to descending neurons. We find unexpected structure in sensory inputs, in the transfer of information about different sensory modalities to MBONs, and in the modulation of that transfer by dopaminergic neurons (DANs). We provide insights into the circuitry used to integrate MB outputs, connectivity between the MB and the central complex and inputs to DANs, including feedback from MBONs. Our results provide a foundation for further theoretical and experimental work.


Subject(s)
Connectome , Drosophila melanogaster/physiology , Mushroom Bodies/physiology , Animals , Brain Mapping , Mushroom Bodies/innervation
3.
Elife ; 92020 11 03.
Article in English | MEDLINE | ID: mdl-33141021

ABSTRACT

Aggressive social interactions are used to compete for limited resources and are regulated by complex sensory cues and the organism's internal state. While both sexes exhibit aggression, its neuronal underpinnings are understudied in females. Here, we identify a population of sexually dimorphic aIPg neurons in the adult Drosophila melanogaster central brain whose optogenetic activation increased, and genetic inactivation reduced, female aggression. Analysis of GAL4 lines identified in an unbiased screen for increased female chasing behavior revealed the involvement of another sexually dimorphic neuron, pC1d, and implicated aIPg and pC1d neurons as core nodes regulating female aggression. Connectomic analysis demonstrated that aIPg neurons and pC1d are interconnected and suggest that aIPg neurons may exert part of their effect by gating the flow of visual information to descending neurons. Our work reveals important regulatory components of the neuronal circuitry that underlies female aggressive social interactions and provides tools for their manipulation.


Subject(s)
Aggression/physiology , Drosophila melanogaster/physiology , Neural Pathways/physiology , Animals , Brain/cytology , Brain/physiology , Drosophila melanogaster/cytology , Female , Neural Pathways/cytology , Neurons/cytology , Neurons/physiology , Optogenetics
4.
Nature ; 579(7797): 101-105, 2020 03.
Article in English | MEDLINE | ID: mdl-32103180

ABSTRACT

Mating and egg laying are tightly cooordinated events in the reproductive life of all oviparous females. Oviposition is typically rare in virgin females but is initiated after copulation. Here we identify the neural circuitry that links egg laying to mating status in Drosophila melanogaster. Activation of female-specific oviposition descending neurons (oviDNs) is necessary and sufficient for egg laying, and is equally potent in virgin and mated females. After mating, sex peptide-a protein from the male seminal fluid-triggers many behavioural and physiological changes in the female, including the onset of egg laying1. Sex peptide is detected by sensory neurons in the uterus2-4, and silences these neurons and their postsynaptic ascending neurons in the abdominal ganglion5. We show that these abdominal ganglion neurons directly activate the female-specific pC1 neurons. GABAergic (γ-aminobutyric-acid-releasing) oviposition inhibitory neurons (oviINs) mediate feed-forward inhibition from pC1 neurons to both oviDNs and their major excitatory input, the oviposition excitatory neurons (oviENs). By attenuating the abdominal ganglion inputs to pC1 neurons and oviINs, sex peptide disinhibits oviDNs to enable egg laying after mating. This circuitry thus coordinates the two key events in female reproduction: mating and egg laying.


Subject(s)
Copulation/physiology , Drosophila melanogaster/physiology , Neural Pathways/physiology , Oviposition/physiology , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Female , Ganglia, Sympathetic/cytology , Male , Peptides/metabolism , Sensory Receptor Cells/metabolism , Sexual Abstinence/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...