Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37571518

ABSTRACT

Subjected to the relentless impacts of typhoons and rough seas, offshore wind turbines' structures, particularly the tower, foundation, and blade, are at constant risk of damage. Full-field strain monitoring helps to discover potential structural defects, thereby reducing disasters caused by overall structural failure. This study introduces a novel method for assessing strain and temperature fields on these kinds of 3D surfaces of cylindrical structures. The method harnesses the capabilities of a high spatial resolution (0.65 mm) Optical Frequency Domain Reflectometer (OFDR)-based Distributed Optical Fiber Sensor (DOFS) in conjunction with a unique helical wiring layout. The core process begins with mapping the fiber optic path onto a plane corresponding to the unfolded cylinder. Fiber optic signals are then differentiated on this plane, deriving a two-dimensional strain distribution. The plane strain field is subsequently projected onto the 3D side of the cylinder. An experiment was carried out in which a 3.5 m long optical fiber was helically wound with a 10 mm pitch on the surface of a cantilever beam of a cylinder shell with a diameter of 36 mm and a length of 300 mm. The experiment collected about 5400 measurement points on the cylindrical surface of 340 cm2, approximately 15.9 measurement points per square centimeter. The reconstructed results successfully reveal the strain field of the pipe cantilever beam under bending and torsional loads, as well as the palm-shaped temperature field. This experimental validation of the method's efficacy lays the theoretical groundwork for its application to real wind turbines.

2.
Sensors (Basel) ; 21(2)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445596

ABSTRACT

Optical fiber sensors have been potentially expected to apply in the extreme environment for their advantages of measurement in a large temperature range. The packaging measure which makes the strain sensing fiber survive in these harsh conditions will commonly introduce inevitable strain transfer errors. In this paper, the strain transfer characteristics of a multi-layer optical fiber sensing structure working at cryogenic environment with temperature gradients have been investigated theoretically. A generalized three-layer shear lag model incorporating with temperature-dependent properties of layers was developed. The strain transfer relationship between the optical fiber core and the matrix has been derived in form of a second-order ordinary differential equation (ODE) with variable coefficients, where the Young's modulus and the coefficients of thermal expansion (CTE) are considered as functions of temperature. The strain transfer characteristics of the optical sensing structure were captured by solving the ODE boundary problems for cryogenic temperature loads. Case studies of the cooling process from room temperature to some certain low temperatures and gradient temperature loads for different low-temperature zones were addressed. The results showed that different temperature load configurations cause different strain transfer error features which can be described by the proposed model. The protective layer always plays a main role, and the optimization geometrical parameters should be carefully designed. To verify the theoretical predictions, an experiment study on the thermal strain measurement of an aluminum bar with optical fiber sensors was conducted. LUNA ODiSI 6100 integrator was used to measure the Rayleigh backscattering spectra shift of the optical fiber at a uniform temperature and a gradient temperature under liquid nitrogen temperature zone, and a reasonable agreement with the theory was presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...