Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 101(2): 301-10, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17901061

ABSTRACT

BACKGROUND AND AIMS: Exposure of plants to ethylene can influence a spectrum of developmental processes including organ senescence and abscission. The aim of this study was to examine the role of the gaseous regulator in Nicotiana sylvestris plants exhibiting a silenced or constitutive ethylene response. METHODS: Transgenic N. sylvestris plants were generated that either ectopically expressed the Arabidopsis mutant ethylene receptor ETR1-1 or the tomato EIN3-like (LeEIL1) gene. Highly expressing homozygous lines were selected and the time-course of development, from germination to organ senescence, was studied. KEY RESULTS: Fifty percent of the homozygous Pro(35S):ETR1-1 lines examined showed a high susceptibility to collapse prior to flowering, with plant death occurring within a few days of leaf wilting. The time-course of leaf senescence in the remaining Pro(35S):ETR1-1 lines was visibly arrested compared to wild type (negative segregant) plants and this observation was reaffirmed by chlorophyll and protein analysis. Petal necrosis was also delayed in Pro(35S):ETR1-1 lines and corolla abscission did not take place. When senescence of Pro(35S):ETR1-1 plants did take place this was accompanied by leaf bleaching, but tissues remained fully turgid and showed no signs of collapse. A single Pro(35S):LeEIL1 line was found to exhibit consistently accelerated leaf and flower senescence and precocious flower bud shedding. CONCLUSIONS: These observations support a role for ethylene in regulating a spectrum of developmental events associated with organ senescence and tissue necrosis. Furthermore, the transgenic lines generated during this study may provide a valuable resource for exploring how senescence processes are regulated in plants.


Subject(s)
Ethylenes/metabolism , Nicotiana/genetics , Nicotiana/physiology , Arabidopsis Proteins/metabolism , Chlorophyll/metabolism , Flowers/physiology , Gene Expression Regulation, Plant , Solanum lycopersicum/metabolism , Phenotype , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Receptors, Cell Surface/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...