Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(19): 5847-5854, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700109

ABSTRACT

We report a new design of polymer phenylacetylene (PA) ligands and the ligand exchange methodology for colloidal noble metal nanoparticles (NPs). PA-terminated poly(ethylene glycol) (PEG) can bind to metal NPs through acetylide (M-C≡C-R) that affords a high grafting density. The ligand-metal interaction can be switched between σ bonding and extended π backbonding by changing grafting conditions. The σ bonding of PEG-PA with NPs is strong and it can compete with other capping ligands including thiols, while the π backbonding is much weaker. The σ bonding is also demonstrated to improve the catalytic performance of Pd for ethanol oxidation and prevent surface absorption of the reaction intermediates. Those unique binding characteristics will enrich the toolbox in the control of colloidal surface chemistry and their applications using polymer ligands.

2.
J Phys Chem A ; 128(16): 3180-3185, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38626324

ABSTRACT

We investigated the F + HD(v = 1, j = 0) → HF + D reaction using the crossed molecular beam technique combined with the D atom Rydberg tagging time-of-flight spectroscopy. By detecting the products at various scattering angles for different collision energies in the range of 0.8-1.2 kcal/mol, we observed the forward-scattering products of HF(v' = 4) and determined the threshold energy for the opening of this reaction channel. Similar experiments were conducted for the F + HD(v = 0, j = 0) → HF + D reaction within the range of 1.1-1.6 kcal/mol, where forward-scattering products of HF(v' = 3) were observed, and the threshold energy for this reaction channel was determined as well. Furthermore, we measured the differential cross-sections for the F + HD → HF + D reaction in both the vibrational ground state and the excited state of HD and analyzed the vibrational quantum-state distribution of the HF products. It was found that the population of vibrational quantum states of the HF products increases synchronously with the excitation of the reactant HD vibrationally.

3.
J Am Chem Soc ; 146(9): 5786-5792, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38382057

ABSTRACT

To mitigate pollution by plastic waste, it is paramount to develop polymers with efficient recyclability while retaining desirable physical properties. A recyclable poly(methyl methacrylate) (PMMA) is synthesized by incorporating a minimal amount of an α-methylstyrene (AMS) analogue into the polymer structure. This P(MMA-co-AMS) copolymer preserves the essential mechanical strength and optical clarity of PMMA, vital for its wide-ranging applications in various commercial and high-tech industries. Doping with AMS significantly enhances the thermal, catalyst-free depolymerization efficiency of PMMA, facilitating the recovery of methyl methacrylate (MMA) with high yield and purity at temperatures ranging from 150 to 210 °C, nearly 250 K lower than current industrial standards. Furthermore, the low recovery temperature permits the isolation of pure MMA from a mixture of assorted common plastics.

4.
J Phys Chem Lett ; 14(51): 11603-11609, 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38100090

ABSTRACT

High-efficiency excitation of a molecular beam is critical for investigating state-selected chemistry. However, achieving vibrational excitation of the entire beam for Raman-active molecules such as H2 proves extremely challenging, primarily because laser pulses are much shorter than the molecular beam. In this study, we achieve a total excitation efficiency of over 20% by employing stimulated Raman pumping (SRP) in a slow, narrow-pulsed molecular beam. Through optimizing the intensity and spot shape of the SRP lasers, we attain saturated excitation within the laser crossing region. Furthermore, by reducing the beam velocity and narrowing the beam pulse using a cold valve and a fast chopper, we significantly enhance the total excitation yield. COMSOL simulation and a newly developed model reveal that a critical velocity allows the chopper to block unexcited molecules and reserve most of the excited ones from the beam, resulting in the highest overall excitation yield. This innovative setup opens new possibilities for state-selected experiments in surface science and ion-molecule reaction dynamics, particularly involving weak transitions and pulsed lasers.

5.
Sci Adv ; 7(2)2021 Jan.
Article in English | MEDLINE | ID: mdl-33523979

ABSTRACT

The reaction C+ + H2O → HCO+/HOC+ + H is one of the most important astrophysical sources of HOC+ ions, considered a marker for interstellar molecular clouds exposed to intense ultraviolet or x-ray radiation. Despite much study, there is no consensus on rate constants for formation of the formyl ion isomers in this reaction. This is largely due to difficulties in laboratory study of ion-molecule reactions under relevant conditions. Here, we use a novel experimental platform combining a cryogenic buffer-gas beam with an integrated, laser-cooled ion trap and high-resolution time-of-flight mass spectrometer to probe this reaction at the temperature of cold interstellar clouds. We report a reaction rate constant of k = 7.7(6) × 10-9 cm3 s-1 and a branching ratio of formation η = HOC+/HCO+ = 2.1(4). Theoretical calculations suggest that this branching ratio is due to the predominant formation of HOC+ followed by isomerization of products with internal energy over the isomerization barrier.

7.
Science ; 368(6491): 582-583, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32381705
8.
Nat Chem ; 11(8): 744-749, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31235895

ABSTRACT

Chemical reactions are important in the evolution of low-temperature interstellar clouds, where the quantum tunnelling effect becomes significant. The F + para-H2 → HF + H reaction, which has a significant barrier of 1.8 kcal mol-1, is an important source of HF in interstellar clouds; however, the dynamics of this quantum-tunnelling-induced reactivity at low temperature is unknown. Here, we show that this quantum tunnelling is caused by a post-barrier resonance state. Quantum-state-resolved crossed-beam scattering measurements reveal that this resonance state has a collision energy of ~5 meV and a lifetime of ~80 fs, which are in excellent agreement with a recent anion photoelectron spectroscopic study. Accurate quantum reactive scattering calculations on the new iCSZ-LWAL potential energy surfaces provides a detailed explanation of the experimental results. The reaction rate for this system was also theoretically determined accurately at temperatures as low as 1 K.

9.
Biomater Sci ; 7(7): 2951-2960, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31099352

ABSTRACT

Recently, block copolymer micelles have attracted widespread attention due to their controlled biodegradability and excellent loading capability. Unfortunately, the poor in vivo stability and low delivery efficiency of drug-loaded micelles greatly hampered their biomedical applications. Herein, we develop a new kind of biodegradable magnetite/doxorubicin (Fe3O4/DOX) co-loaded PEGylated organosilica micelles (designated as FDPOMs) with both high circulating stability and smart GSH-triggered biodegradability for magnetically targeted magnetic resonance imaging (MRI) and tumor chemotherapy. The FDPOMs are prepared by the self-assembly of biodegradable polycaprolactone-block-poly(glutamic acid) (PCL-b-PGA), a chemotherapeutic DOX drug and Fe3O4 nanoparticles in an oil/water system, subsequent organosilica cross-linking with 3-mercaptopropyltrimethoxysilane (MPTMS) molecules and surface PEGylation. The resultant FDPOMs exhibit excellent dispersity and stability in biological media, remarkable T2-weighted MR imaging capability, unique GSH-responsive release behavior and selective toxicity to tumor cells. The in vivo experiments show that the FDPOMs not only have improved MR tumor imaging capability, but also exhibit high anti-tumor efficacy due to the strong magnetic targeting ability under an external magnetic field. Consequently, the FDPOMs are promising candidates for magnetically targeted MR imaging and imaging-guided tumor chemotherapy.


Subject(s)
Doxorubicin/pharmacology , Glutathione/metabolism , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Micelles , Organosilicon Compounds/chemistry , Organosilicon Compounds/metabolism , Animals , Cell Line, Tumor , Doxorubicin/chemistry , Drug Carriers/chemistry , Drug Carriers/metabolism , Drug Liberation , Humans , Hydrophobic and Hydrophilic Interactions , Male , Mice , NIH 3T3 Cells , Polyesters/chemistry , Polyglutamic Acid/chemistry , Safety
10.
Phys Chem Chem Phys ; 21(26): 14005-14011, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-30620013

ABSTRACT

Low temperature reactions between laser-cooled Be+(2S1/2) ions and partially deuterated water (HOD) molecules have been investigated using an ion trap and interpreted with zero-point corrected quasi-classical trajectory calculations on a highly accurate global potential energy surface for the ground electronic state. Both product channels have been observed for the first time, and the branching to BeOD+ + H is found to be 0.58 ± 0.14. The experimental observation is reproduced by both quasi-classical trajectory and statistical calculations. Theoretical analyses reveal that the branching to the two product channels is largely due to the availability of open states in each channel.

11.
Chem Soc Rev ; 47(17): 6744-6763, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-29955737

ABSTRACT

The transition state is a key concept in the field of chemistry and is important in the study of chemical kinetics and reaction dynamics. Chemical reactions in the gas phase are essentially molecular scattering processes, which are quantum mechanical in nature. Thus probing and understanding detailed quantum structure in the transition state region of chemical reactions, such as reactive resonances, is a central topic in this field. In this article, we focus on recent progress in the study of resonances in elementary bimolecular reactions using state-of-the-art transition state spectroscopy methods: high-resolution photoelectron spectroscopy and quantum state specific backward scattering spectroscopy. The experimental results are compared with high-level quantum dynamics calculations based on highly accurate potential energy surfaces. The dynamics of reactive resonances are also interpreted based on scattering wavefunctions obtained by time-dependent wavepacket calculations. Here, we review many systems that illustrate how reactive resonances can strongly influence the dynamics of elementary chemical reactions.

12.
J Phys Chem Lett ; 9(13): 3555-3560, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29893569

ABSTRACT

We investigate reactions between laser-cooled Be+ ions and room-temperature water molecules using an integrated ion trap and high-resolution time-of-flight mass spectrometer. This system allows simultaneous measurement of individual reaction rates that are resolved by reaction product. The rate coefficient of the Be+(2S1/2) + H2O → BeOH+ + H reaction is measured for the first time and is found to be approximately two times smaller than predicted by an ion-dipole capture model. Zero-point-corrected quasi-classical trajectory calculations on a highly accurate potential energy surface for the ground electronic state reveal that the reaction is capture-dominated, but a submerged barrier in the product channel lowers the reactivity. Furthermore, laser excitation of the ions from the 2S1/2 ground state to the 2P3/2 state opens new reaction channels, and we report the rate and branching ratio of the Be+(2P3/2) + H2O → BeOH+ + H and H2O+ + Be reactions. The excited-state reactions are nonadiabatic in nature.

13.
Biosens Bioelectron ; 108: 62-68, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29501048

ABSTRACT

In the present work, PNIPAM-DNA films were fabricated on the surface of electrodes by GOD-induced radical polymerization, where PNIPAM is poly(N-isopropylacrylamide), DNA represents natural DNA from salmon testes, and GOD is glucose oxidase. The prepared film electrodes demonstrated reversible temperature-, SO42--, and pH-switched cyclic voltammetry (CV) and electrochemiluminescence (ECL) behaviors toward tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)32+) in solution. Particularly, both CV and ECL signals at 1.15 V belonging to Ru(bpy)32+ were significantly amplified by the electrocatalysis of DNA in the films. Moreover, the addition of ferrocenemethanol (FcMeOH) into the solution led to the substantial quenching of the ECL signal of the system and produced a new CV peak pair at 0.35 V. Based upon these experiments, a 4-input/7-output logic gate system was successfully built, which also lead to a 2-to-1 encoder and a 1-to-2 decoder. On the same platform, a more complicated logic device, a half-adder, was also constructed. The present system combined electrocatalysis of natural DNA mediated by Ru(bpy)32+ and multiple stimuli-responsive PNIPAM-DNA films together with simultaneously obtained CV and ECL signals as outputs, leading to the development of novel types of biocomputing systems.


Subject(s)
2,2'-Dipyridyl/analogs & derivatives , Acrylic Resins/chemistry , Biocatalysis , Computers, Molecular , DNA/chemistry , Polymers/chemistry , 2,2'-Dipyridyl/chemistry , Animals , Coordination Complexes , Electrochemical Techniques , Electrodes , Ferrous Compounds/chemistry , Fluorescent Dyes/chemistry , Glucose Oxidase/chemistry , Hydrogen-Ion Concentration , Male , Sulfates/chemistry
14.
Biosens Bioelectron ; 99: 163-169, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-28755609

ABSTRACT

Herein, a resettable and reprogrammable biomolecular keypad lock on the basis of a closed bipolar electrode (BPE) system was established. In this system, one ITO electrode with immobilized chitosan (CS) and glucose oxidase (GOD), designated as CS-GOD, acted as one pole of BPE in the sensing cell; another ITO with electrodeposited Prussian blue (PB) films as the other pole in the reporting cell. The addition of ascorbic acid (AA) in the sensing cell with driving voltage (Vtot) at +2.5V would make the PB films become Prussian white (PW) in the reporting cell, accompanied by the color change from blue to nearly transparent. On the other hand, with the help of oxygen, the addition of glucose in the sensing cell with Vtot at -1.5V would induce PW back to PB. The change of color and the corresponding UV-vis absorbance at 700nm for the PB/PW films in the reporting cell could be reversibly switched by changing the solute in the sensing cell between AA and glucose and then switching Vtot between +2.5 and -1.5V. Based on these, a keypad lock was developed with AA, glucose and Vtot as 3 inputs, and the color change of the PB/PW films as the output. This keypad lock system combined enzymatic catalysis with bipolar electrochemistry, demonstrating some unique advantages such as good reprogrammability, easy resettability and visual readout by naked eye.


Subject(s)
Biosensing Techniques , Cell Tracking , Chitosan/chemistry , Glucose Oxidase/chemistry , Ascorbic Acid/chemistry , Catalysis , Electrodes , Enzymes, Immobilized/chemistry , Glucose/chemistry , Gold/chemistry
15.
Phys Chem Chem Phys ; 19(33): 22472-22481, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28808714

ABSTRACT

In this paper, poly(N-isopropylacrylamide-co-3-aminophenylboronic acid) (P(NIPAM-co-APBA)) copolymer films were successfully electropolymerized on the Au electrode surface. The electroactive probe ferrocene carboxylic acid (FCA) in solution showed reversible thermal-, glucose- and pH-responsive on-off cyclic voltammetric (CV) behaviors at the film electrodes. The comparative experiments demonstrated that the thermo-responsive property of the film electrode was ascribed to the PNIPAM component of the films, whereas the glucose- and pH-sensitive behaviors came from the PAPBA constituent. The reduced form of nicotinamide adenine dinucleotide (NADH) could be electrocatalytically oxidized by FCA at the film electrodes, which would greatly amplify the multi-responsive CV signal difference between the on and off states. On the basis of these results, a binary 4-input/4-output logic circuit was fabricated with temperature, glucose, pH and NADH as inputs and the CV responses at 4 different levels as outputs. Moreover, a ternary CONSENSUS logic circuit was established on the same platform, which was the first report on the combination of ternary logic gate and bioelectrocatalysis without using enzymes. This work provided a novel idea for constructing complicated biocomputing systems by increasing the number of inputs/outputs with multi-sensitive interfaces and by designing new types of multi-valued logic gates on the basis of bioelectrocatalysis.


Subject(s)
NAD/chemistry , Polymers/chemistry , Acrylic Resins/chemistry , Biocompatible Materials/chemistry , Boronic Acids/chemistry , Catalysis , Electrochemical Techniques , Electrodes , Ferrous Compounds/chemistry , Glucose/analysis , Glucose/chemistry , Hydrogen-Ion Concentration , Metallocenes , Oxidation-Reduction , Temperature
16.
J Phys Chem A ; 119(50): 12284-90, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26299775

ABSTRACT

The reaction of fluorine atom with vibrationally excited H2 at v = 1 has been studied using a high resolution crossed molecular beam apparatus at collision energies of 0.52 and 0.90 kcal/mol. Product HF rotational state-resolved differential cross sections (DCSs) were measured at v' = 2, 3, 4 levels. The product angular distributions are predominantly backward scattered except for a small forward signal of HF(v' = 4) at 0.90 kcal/mol. At the collision energy of 0.52 kcal/mol, the forward scattering peak of the HF(v' = 2) product, which arises in F + H2(v = 0) reaction from the Feshbach resonances, disappears in F + H2(v = 1) reaction. Oscillatory structures do not appear in the backward direction of the scattering as the collision energy increases from 0.4 to 2.0 kcal/mol, indicating there are no explicit reaction resonances in the F + H2(v = 1, j = 0) → HF + H reaction in the studied energy range. Quantum dynamics calculations on a highly accurate potential energy surface are in good agreement with the experimental results and reveal that the reaction occurs via likely a direct abstraction mechanism, not via long-lived reactive resonances.

17.
Science ; 347(6217): 60-3, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25554783

ABSTRACT

The Cl + H2 reaction is an important benchmark system in the study of chemical reaction dynamics that has always appeared to proceed via a direct abstraction mechanism, with no clear signature of reaction resonances. Here we report a high-resolution crossed-molecular beam study on the Cl + HD (v = 1, j = 0) → DCl + H reaction (where v is the vibrational quantum number and j is the rotational quantum number). Very few forward scattered products were observed. However, two distinctive peaks at collision energies of 2.4 and 4.3 kilocalories per mole for the DCl (v' = 1) product were detected in the backward scattering direction. Detailed quantum dynamics calculations on a highly accurate potential energy surface suggested that these features originate from two very short-lived dynamical resonances trapped in the peculiar H-DCl (v' = 2) vibrational adiabatic potential wells that result from chemical bond softening. We anticipate that dynamical resonances trapped in such wells exist in many reactions involving vibrationally excited molecules.

18.
J Phys Chem Lett ; 5(17): 3049-55, 2014 Sep 04.
Article in English | MEDLINE | ID: mdl-26278258

ABSTRACT

An interesting trimodal structure in the HF (v' = 2) rotational distribution produced by the F + HD (v = 0, j = 0) reaction, but monomodal structure in the HF (v' = 2) rotational distribution produced by the F + H2 (v = 0, j = 0) reaction, were observed using a high-resolution crossed molecular beam apparatus. The rotational states of product HF (v' = 2) are much hotter in the F + HD reaction. It is uncovered that the observations are due to the dominant role of the dynamical resonance states in these two isotopic reactions. The angular potential well in the region of the resonance state of the F + HD reaction is much deeper and supports wave function with high angular kinetic energy, which in turn comes from different H tunneling processes in the F + HD and F + H2 reaction.

19.
Science ; 342(6165): 1499-502, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24357315

ABSTRACT

Experimental limitations in vibrational excitation efficiency have previously hindered investigation of how vibrational energy might mediate the role of dynamical resonances in bimolecular reactions. Here, we report on a high-resolution crossed-molecular-beam experiment on the vibrationally excited HD(v = 1) + F → HF + D reaction, in which two broad peaks for backward-scattered HF(v' = 2 and 3) products clearly emerge at collision energies of 0.21 kilocalories per mole (kcal/mol) and 0.62 kcal/mol from differential cross sections measured over a range of energies. We attribute these features to excited Feshbach resonances trapped in the peculiar HF(v' = 4)-D vibrationally adiabatic potential in the postbarrier region. Quantum dynamics calculations on a highly accurate potential energy surface show that these resonance states correlate to the HD(v' = 1) state in the entrance channel and therefore can only be accessed by the vibrationally excited HD reagent.

20.
J Phys Chem Lett ; 4(3): 368-71, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-26281725

ABSTRACT

A primary prerequisite to study reactivity of vibrationally excited species is to efficiently prepare reacting species in a well-defined vibrational level. Efficient pumping of IR active vibrational modes in a molecule can be achieved by direct IR absorption. For vibrational modes that are only Raman active, however, efficient preparation of vibrationally excited states in those modes is not easily attainable. In this work, we have shown that highly efficient preparation of the HD(v = 1) state using the Stark-induced adiabatic Raman passage (SARP) scheme is feasible. As high as 91% population transfer from v = 0 to 1 of HD has been demonstrated in our experiment. This method provides new opportunities for future experimental studies on the dynamics of vibrational state molecules, especially H2, in both gas-phase and beam-surface reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...