Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38793976

ABSTRACT

Human motion capture technology, which leverages sensors to track the movement trajectories of key skeleton points, has been progressively transitioning from industrial applications to broader civilian applications in recent years. It finds extensive use in fields such as game development, digital human modeling, and sport science. However, the affordability of these sensors often compromises the accuracy of motion data. Low-cost motion capture methods often lead to errors in the captured motion data. We introduce a novel approach for human motion reconstruction and enhancement using spatio-temporal attention-based graph convolutional networks (ST-ATGCNs), which efficiently learn the human skeleton structure and the motion logic without requiring prior human kinematic knowledge. This method enables unsupervised motion data restoration and significantly reduces the costs associated with obtaining precise motion capture data. Our experiments, conducted on two extensive motion datasets and with real motion capture sensors such as the SONY (Tokyo, Japan) mocopi, demonstrate the method's effectiveness in enhancing the quality of low-precision motion capture data. The experiments indicate the ST-ATGCN's potential to improve both the accessibility and accuracy of motion capture technology.


Subject(s)
Movement , Humans , Movement/physiology , Biomechanical Phenomena , Algorithms , Neural Networks, Computer , Motion , Image Processing, Computer-Assisted/methods
2.
World J Gastroenterol ; 30(18): 2440-2453, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764767

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) with hepatic histological NAFLD activity score ≥ 4 and fibrosis stage F ≥ 2 is regarded as "at risk" non-alcoholic steatohepatitis (NASH). Based on an international consensus, NAFLD and NASH were renamed as metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), respectively; hence, we introduced the term "high-risk MASH". Diagnostic values of seven non-invasive models, including FibroScan-aspartate transaminase (FAST), fibrosis-4 (FIB-4), aspartate transaminase to platelet ratio index (APRI), etc. for high-risk MASH have rarely been studied and compared in MASLD. AIM: To assess the clinical value of seven non-invasive models as alternatives to liver biopsy for diagnosing high-risk MASH. METHODS: A retrospective analysis was conducted on 309 patients diagnosed with NAFLD via liver biopsy at Beijing Ditan Hospital, between January 2012 and December 2020. After screening for MASLD and the exclusion criteria, 279 patients were included and categorized into high-risk and non-high-risk MASH groups. Utilizing threshold values of each model, sensitivity, specificity, positive predictive value (PPV), and negative predictive values (NPV), were calculated. Receiver operating characteristic curves were constructed to evaluate their diagnostic efficacy based on the area under the curve (AUROC). RESULTS: MASLD diagnostic criteria were met by 99.4% patients with NAFLD. The MASLD population was analyzed in two cohorts: Overall population (279 patients) and the subgroup (117 patients) who underwent liver transient elastography (FibroScan). In the overall population, FIB-4 showed better diagnostic efficacy and higher PPV, with sensitivity, specificity, PPV, NPV, and AUROC of 26.9%, 95.2%, 73.5%, 72.2%, and 0.75. APRI, Forns index, and aspartate transaminase to alanine transaminase ratio (ARR) showed moderate diagnostic efficacy, whereas S index and gamma-glutamyl transpeptidase to platelet ratio (GPR) were relatively weaker. In the subgroup, FAST had the highest diagnostic efficacy, its sensitivity, specificity, PPV, NPV, and AUROC were 44.2%, 92.3%, 82.1%, 67.4%, and 0.82. The FIB-4 AUROC was 0.76. S index and GPR exhibited almost no diagnostic value for high-risk MASH. CONCLUSION: FAST and FIB-4 could replace liver biopsy as more effectively diagnostic methods for high-risk MASH compared to APRI, Forns index, ARR, S index, and GPR; FAST is superior to FIB-4.


Subject(s)
Aspartate Aminotransferases , Elasticity Imaging Techniques , Liver , Non-alcoholic Fatty Liver Disease , Predictive Value of Tests , Humans , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/pathology , Male , Female , Middle Aged , Retrospective Studies , Aspartate Aminotransferases/blood , Elasticity Imaging Techniques/methods , Liver/pathology , Liver/diagnostic imaging , Adult , Biopsy , ROC Curve , Platelet Count , Sensitivity and Specificity , Severity of Illness Index , Aged , Biomarkers/blood , Risk Factors , Risk Assessment/methods
3.
Sensors (Basel) ; 24(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38676151

ABSTRACT

The absence of some forms of non-verbal communication in virtual reality (VR) can make VR-based group discussions difficult even when a leader is assigned to each group to facilitate discussions. In this paper, we discuss if the sensor data from off-the-shelf VR devices can be used to detect opportunities for facilitating engaging discussions and support leaders in VR-based group discussions. To this end, we focus on the detection of suppressed speaking intention in VR-based group discussions by using personalized and general models. Our extensive analysis of experimental data reveals some factors that should be considered to enable effective feedback to leaders. In particular, our results show the benefits of combining the sensor data from leaders and low-engagement participants, and the usefulness of specific HMD sensor features.

4.
J Agric Food Chem ; 72(8): 3984-3997, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38357888

ABSTRACT

Plant secondary metabolites are critical quality-conferring compositions of plant-derived beverages, medicines, and industrial materials. The accumulations of secondary metabolites are highly variable among seasons; however, the underlying regulatory mechanism remains unclear, especially in epigenetic regulation. Here, we used tea plants to explore an important epigenetic mark DNA methylation (5mC)-mediated regulation of plant secondary metabolism in different seasons. Multiple omics analyses were performed on spring and summer new shoots. The results showed that flavonoids and theanine metabolism dominated in the metabolic response to seasons in the new shoots. In summer new shoots, the genes encoding DNA methyltransferases and demethylases were up-regulated, and the global CG and CHG methylation reduced and CHH methylation increased. 5mC methylation in promoter and gene body regions influenced the seasonal response of gene expression; the amplitude of 5mC methylation was highly correlated with that of gene transcriptions. These differentially methylated genes included those encoding enzymes and transcription factors which play important roles in flavonoid and theanine metabolic pathways. The regulatory role of 5mC methylation was further verified by applying a DNA methylation inhibitor. These findings highlight that dynamic DNA methylation plays an important role in seasonal-dependent secondary metabolism and provide new insights for improving tea quality.


Subject(s)
Camellia sinensis , DNA Methylation , Secondary Metabolism , Seasons , Epigenesis, Genetic , Plant Leaves/genetics , Plant Leaves/metabolism , Camellia sinensis/genetics , Camellia sinensis/metabolism , Flavonoids/metabolism , Tea/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
5.
Environ Toxicol ; 39(1): 148-155, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37676913

ABSTRACT

Glufosinate-ammonium (GLA) is a widely used herbicide, but less research has been done on its harmful effects on non-target organisms, especially aquatic organisms. In this study, 600 adult zebrafish were exposed to different concentration of GLA (0, 1.25, 2.5, 5, 10, and 20 mg/L) for 7 days, and the livers were dissected on the eighth day to examine the changes in liver structure, function, oxidative stress, inflammation, apoptosis, and Nrf2 pathway, and finally to clarify the mechanism of GLA induced liver injury in zebrafish. The levels of alanine aminotransferase, aspartate aminotransferase, reactive oxygen species, malondialdehyde, inflammatory factors (IL-6 and TNF-α), and caspase-3 gradually increased, while the levels of superoxide dismutase, catalase, glutathione, and glutathione peroxidase gradually decreased with the increase of GLA concentration. The Nrf2 pathway was activated at low concentrations (1.25-5 mg/L) and significantly inhibited at high concentrations (10 and 20 mg/L). These results suggested that GLA could cause oxidative stress, inflammation, and apoptosis in zebrafish liver. Therefore, GLA can cause liver injury in zebrafish, and at high concentrations, the inhibition of Nrf2 pathway is one of the important causes of liver injury.


Subject(s)
NF-E2-Related Factor 2 , Zebrafish , Animals , Zebrafish/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Liver , Inflammation/chemically induced , Inflammation/metabolism
7.
J Agric Food Chem ; 71(48): 19045-19053, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37982559

ABSTRACT

Pyrrolizidine alkaloids (PAs) have been detected in tea and can threaten human health. However, the specific source of PAs in tea is still unclear. Here, 88 dried tea products collected from six major tea-producing areas in Anhui Province, China, were analyzed. The detection frequency was 76%. The content of total PAs in dried tea was between 1.1 and 90.5 µg/kg, which was all below the MRL recommended by the European Union (150 µg/kg). In the Shexian tea garden, PAs in the weeds and weed rhizospheric soil around tea plants and the fresh tea leaves were analyzed. Intermedine (Im), intermedine-N-oxide (ImNO), and jacobine-N-oxide (JbNO) were transferred through the weed-to-soil-to-tea route into the fresh tea leaves; only Im and ImNO were detected in dried tea samples. Potential risk of the total PAs in the tea infusion was assessed according to the margin of exposure method, and it might be a low concern for public health.


Subject(s)
Camellia sinensis , Pyrrolizidine Alkaloids , Humans , Pyrrolizidine Alkaloids/analysis , Plant Weeds , Tea , Risk Assessment , Oxides
8.
Hortic Res ; 10(2): uhac269, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37533676

ABSTRACT

Theanine content is highly correlated with sensory quality and health benefits of tea infusion. The tender shoots of etiolated and albino tea plants contain higher theanine than the normal green tea plants and are valuable materials for high quality green tea processing. However, why these etiolated or albino tea plants can highly accumulate theanine is largely unknown. In this study, we observed an Arabidopsis etiolated mutant hy1-100 (mutation in Haem Oxygenase 1, HO1) that accumulated higher levels of glutamine (an analog of theanine). We therefore identified CsHO1 in tea plants and found CsHO1 is conserved in amino acid sequences and subcellular localization with its homologs in other plants. Importantly, CsHO1 expression in the new shoots was much lower in an etiolated tea plants 'Huangkui' and an albino tea plant 'Huangshan Baicha' than that in normal green tea plants. The expression levels of CsHO1 were negatively correlated with theanine contents in these green, etiolated and albino shoots. Moreover, CsHO1 expression levels in various organs and different time points were also negatively correlated with theanine accumulation. The hy1-100 was hypersensitive to high levels of theanine and accumulated more theanine under theanine feeding, and these phenotypes were rescued by the expression of CsHO1 in this mutant. Transient knockdown CsHO1 expression in the new shoots of tea plant using antisense oligonucleotides (asODN) increased theanine accumulation. Collectively, these results demonstrated CsHO1 negatively regulates theanine accumulation in tea plants, and that low expression CsHO1 likely contributes to the theanine accumulation in etiolated/albino tea plants.

9.
J Agric Food Chem ; 71(24): 9381-9390, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37293923

ABSTRACT

Chronic stress can cause intestinal barrier damage. MAPK and NF-κB are closely related to it. Chlorogenic acid (CGA), a dietary polyphenol, has been shown to have intestinal protective effects, but whether by regulating MAPK and NF-κB is not known. Therefore, in this experiment, 24 Wistar rats were randomly divided into 4 groups (C group, CS group, CS + SB203580, and CS + CGA group). Rats in the CS group were restrained stress for 6 h per day for 21 days. Rats in the CS + SB203580 group were given SB203582 (0.5 mg/kg, intraperitoneal injection) 1 h before restraint stress every other day. Rats in the CS + CGA group were given CGA (100 mg/kg, gavage) 1 h before restraint stress. In chronic stress, intestinal barrier damage was evident, while being restored after CGA treatment. After chronic stress, the levels of p-P38 were increased (P < 0.01), while the levels of p-JNK and p-ERK were not changed. The levels of p-p38 were elevated after CGA treatment (P < 0.01). These results suggested that p38MAPK played an important role in chronic stress-induced intestinal injury, and CGA could inhibit p38MAPK activity. Therefore, we chose SB203582 (P38MAPK inhibitor) to elucidate the role of p38. After chronic stress, intestinal tight junction key proteins Occludin, ZO-1, and Claudin3 protein and gene expression were reduced (P < 0.01), while being elevated after CGA or SB203582 intervention (P < 0.05). After CGA treatment, the levels of p-IκB, p-p65, p-p38, and TNF-α were reduced (P < 0.01). SB203582 intervention reduced p-p65 and TNF-α levels significantly (P < 0.01). These results suggested that CGA could inhibit the NF-κB pathway by suppressing p38MAPK, thereby alleviating chronic stress-induced intestinal damage.


Subject(s)
Chlorogenic Acid , NF-kappa B , Rats , Animals , NF-kappa B/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Tumor Necrosis Factor-alpha , Rats, Wistar
11.
Front Plant Sci ; 14: 1146182, 2023.
Article in English | MEDLINE | ID: mdl-37008477

ABSTRACT

The culturable endophytic fungus Serendipita indica has many beneficial effects on plants, but whether and how it affects physiological activities and phosphorus (P) acquisition of tea seedlings at low P levels is unclear. The objective of this study was to analyze the effects of inoculation with S. indica on growth, gas exchange, chlorophyll fluorescence, auxins, cytokinins, P levels, and expressions of two phosphate transporter (PT) genes in leaves of tea (Camellia sinensis L. cv. Fudingdabaicha) seedlings grown at 0.5 µM (P0.5) and 50 µM (P50) P levels. Sixteen weeks after the inoculation, S. indica colonized roots of tea seedlings, with root fungal colonization rates reaching 62.18% and 81.34% at P0.5 and P50 levels, respectively. Although plant growth behavior, leaf gas exchange, chlorophyll values, nitrogen balance index, and chlorophyll fluorescence parameters of tea seedlings were suppressed at P0.5 versus P50 levels, inoculation of S. indica mitigated the negative effects to some extent, along with more prominent promotion at P0.5 levels. S. indica inoculation significantly increased leaf P and indoleacetic acid concentrations at P0.5 and P50 levels and leaf isopentenyladenine, dihydrozeatin, and transzeatin concentrations at P0.5 levels, coupled with the reduction of indolebutyric acid at P50 levels. Inoculation of S. indica up-regulated the relative expression of leaf CsPT1 at P0.5 and P50 levels and CsPT4 at P0.5 levels. It is concluded that S. indica promoted P acquisition and growth in tea seedlings under P deficit conditions by increasing cytokinins and indoleacetic acid and CsPT1 and CsPT4 expression.

12.
Hortic Res ; 10(2): uhac267, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36778187

ABSTRACT

Glutamine synthetase type I (GSI)-like proteins are proposed to mediate nitrogen signaling and developmental fate by synthesizing yet unidentified metabolites. Theanine, the most abundant non-proteinogenic amino acid in tea plants, is the first identified metabolite synthesized by a GSI-like protein (CsTSI) in a living system. However, the roles of theanine in nitrogen signaling and development are little understood. In this study we found that nitrogen deficiency significantly reduced theanine accumulation and increased lateral root development in tea plant seedlings. Exogenous theanine feeding significantly repressed lateral root development of seedlings of tea plants and the model plant Arabidopsis. The transcriptomic analysis revealed that the differentially expressed genes in the roots under theanine feeding were enriched in the apoplastic pathway and H2O2 metabolism. Consistently, theanine feeding reduced H2O2 levels in the roots. Importantly, when co-treated with H2O2, theanine abolished the promoting effect of H2O2 on lateral root development in both tea plant and Arabidopsis seedlings. The results of histochemical assays confirmed that theanine inhibited reactive oxygen species accumulation in the roots. Further transcriptomic analyses suggested the expression of genes encoding enzymes involved in H2O2 generation and scavenging was down- and upregulated by theanine, respectively. Moreover, the expression of genes involved in auxin metabolism and signaling, cell division, and cell expansion was also regulated by theanine. Collectively, these results suggested that CsTSI-synthesized theanine is likely involved in the regulation of lateral root development, via modulating H2O2 accumulation, in response to nitrogen levels in tea plants. This study also implied that the module consisting of GSI-like protein and theanine-like metabolite is probably conserved in regulating development in response to nitrogen status in plant species.

13.
Int Immunopharmacol ; 117: 109898, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36827925

ABSTRACT

Sepsis is currently the main factor of death in the ICU, and the liver, as an important organ of immunity and stable metabolism, can be acutely damaged during sepsis, and the mortality rate of patients with sepsis complicated by acute liver injury is greatly increased. Celastrol (CEL) is derived from the root bark of Tripterygium wilfordii Hook.f.. As a traditional Chinese medicine, CEL has anti-inflammatory, anti-cancer, anti-oxidant, and other biological activities. Obtain CEL and AHI intersection targets via database and construct protein-protein interaction (PPI) network by STRING. GO functional enrichment and KEGG pathway analyses were performed by R studio. Targets were finally selected to perform molecular docking simulations with CEL. In vivo experiments based on the model of AHI were established by intraperitoneal injection of Lipopolysaccharide (LPS) 4 h, and pre-treated with CEL (0.5 mg/kg, 1 mg/kg, 1.5 mg/kg). The results are as follows: 273 genes with the intersection of CEL and AHI were obtained, and GO and KEGG enrichment analysis were used to design the mechanism of inflammation, apoptosis, and oxidative stress-related injury. By constructing the PPI network selected top 10 targets are: STAT3, RELA, MAPK1, MAPK3, TP53, AKT1, HSP90AA1, JUN, TNF, MAPK14, predicted CEL protection AHI design related pathways of MAPK and PI3K/AKT-related signal pathways. In vivo experiments, CEL inhibited the activation of MAPK and PI3K/AKT related pathways, reduced inflammatory response, apoptosis, and oxidative stress, and significantly improved LPS-induced AHI. In summary, this study predicted the mechanisms involved in the protective effect of CEL on AHI through network pharmacology. In vivo, CEL inhibited MAPK and PI3K/AKT-related signaling pathways, and reduced inflammatory response, apoptosis, and oxidative stress to protect LPS-induced AHI.


Subject(s)
Drugs, Chinese Herbal , Network Pharmacology , Humans , Lipopolysaccharides , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Liver , Antioxidants
14.
Hortic Res ; 10(1): uhac245, 2023.
Article in English | MEDLINE | ID: mdl-36643747

ABSTRACT

Theanine, a unique and the most abundant non-proteinogenic amino acid in tea plants, endows tea infusion with the umami taste and anti-stress effects. Its content in tea correlates highly with green tea quality. Theanine content in new shoots of tea plants is high in mid-spring and greatly decreases in late spring. However, how the decrease is regulated is largely unknown. In a genetic screening, we observed that a yeast mutant, glutamate dehydrolase 2 (gdh2), was hypersensitive to 40 mM theanine and accumulated more theanine. This result implied a role of CsGDH2s in theanine accumulation in tea plants. Therefore, we identified the two homologs of GDH2, CsGDH2.1 and CsGDH2.2, in tea plants. Yeast complementation assay showed that the expression of CsGDH2.1 in yeast gdh2 mutant rescued the theanine hypersensitivity and hyperaccumulation of this mutant. Subcellular localization and tissue-specific expression showed CsGDH2.1 localized in the mitochondria and highly expressed in young tissues. Importantly, CsGDH2.1 expression was low in early spring, and increased significantly in late spring, in the new shoots of tea plants. These results all support the idea that CsGDH2.1 regulates theanine accumulation in the new shoots. Moreover, the in vitro enzyme assay showed that CsGDH2.1 had glutamate catabolic activity, and knockdown of CsGDH2.1 expression increased glutamate and theanine accumulation in the new shoots of tea plants. These findings suggested that CsGDH2.1-mediated glutamate catabolism negatively regulates theanine accumulation in the new shoots in late spring, and provides a functional gene for improving late-spring green tea quality.

15.
Food Addit Contam Part B Surveill ; 16(1): 50-57, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36396606

ABSTRACT

Pyrrolizidine alkaloids (PAs) can be transferred between plants via soil. Indicators of PAs in tea products are useful for tea garden management. In the present work a total of 37 weed species, 37 weed rhizospheric soils and 24 fresh tea leaf samples were collected from tea gardens, in which PAs were detected in 35 weeds species, 21 soil samples and 10 fresh tea leaves samples. In Shexian tea garden, 12.9 µg/kg of intermedine (Im) in one bud plus three leaves, 1.40 and 14.6 µg/kg of intermedine-N-oxide (ImNO) in one bud plus two leaves and one bud plus three leaves were detected, which were transferred from the PA-producing weeds via soil. However, no PAs were detected in fresh tea leaves collected from Langxi tea garden. The results indicated that synthesis of PAs in weeds and their transfer through the weed-soil-fresh tea leaf route varied with soil environments in different tea gardens.


Subject(s)
Food Contamination , Plant Weeds , Food Contamination/analysis , Plant Leaves , Tea , Soil
17.
J Agric Food Chem ; 70(45): 14414-14426, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36318656

ABSTRACT

The liver is the major organ of metabolism and is extremely vulnerable to chronic stress. Lycopene (LYC) is a natural carotenoid with potent antioxidant and chronic disease potential. However, whether LYC protects against chronic restraint stress (CRS)-induced liver injury and the underlying mechanisms remain unclear. In this study, rats were restrained for 21 days for 6 h per day, with or without gavage of LYC (10 mg/kg). Serum ALT (85.99 ± 4.07 U/L) and AST (181.78 ± 7.35 U/L) and scores of liver injury were significantly increased in the CRS group. LYC significantly promoted the nuclear translocation of Nrf2, elevated the expression of antioxidant genes, and attenuated reactive oxygen radicals (ROS) levels within the liver. Cellular thermal shift assay (CETSA) and molecular docking results indicated that LYC competitively binds to Keap1 with the lowest molecule affinity of -9.0 kcal/mol. Moreover, LYC significantly relieved the hepatic endoplasmic reticulum swelling and decreased the expression of endoplasmic reticulum stress (ERS) hallmarks like GRP78, CHOP, and cleaved caspase-12. Meanwhile, LYC also mitigated CRS-induced hepatocyte apoptosis. Interestingly, every other day, the intraperitoneal injection of the Nrf2 inhibitor brusatol (0.4 mg/kg) significantly counteracted the protective effect of LYC. In conclusion, LYC protects against CRS-induced liver injury by activating the Nrf2 signaling pathway, scavenging ROS, and further attenuating ERS-associated apoptosis pathways.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , NF-E2-Related Factor 2 , Rats , Animals , Lycopene/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Endoplasmic Reticulum Stress , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Molecular Docking Simulation , Chemical and Drug Induced Liver Injury, Chronic/etiology , Chemical and Drug Induced Liver Injury, Chronic/genetics , Oxidative Stress , Apoptosis
18.
J Agric Food Chem ; 70(34): 10532-10542, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35975781

ABSTRACT

Chronic stress can cause chronic inflammatory injury to the liver. Chlorogenic acid (CGA) is known to have a wide range of biological activities and anti-inflammatory effects. Resolvin D1 (RvD1) is a polyunsaturated fatty acid derivative that has inhibitory effects on a variety of inflammatory diseases. However, whether CGA can inhibit liver inflammation in chronic stress through RvD1 remains unclear. In this work, male rats were subjected to restraint stress for 6 h every day and built a chronic stress model for 21 days. CGA (100 mg/kg) was administered intragastrically 1 h before restraint, with intraperitoneal injection of RvD1 inhibitor WRW4 (antagonist of FPR2, 0.1 mg/kg) or WRW4 solution every 2 days for 30 min before CGA administration. CGA reduced hepatic hemorrhage and inflammatory cell infiltration, alleviated hepatic injury, decreased the activation of the NF-κB pathway and the expression of interleukin 1ß, interleukin 6, and tumor necrosis factor α in the liver, and increased RvD1 in the serum and liver. The therapeutic effect of CGA was blocked after WRW4 intervention. These results suggest that the protective effects of CGA mediate the NF-κB pathway by upregulating the generation of RvD1. Above all, this research demonstrates the liver protective effect of CGA and provides a potential treatment strategy for chronic inflammatory disease.


Subject(s)
Chlorogenic Acid , NF-kappa B , Animals , Docosahexaenoic Acids/pharmacology , Inflammation/drug therapy , Inflammation/pathology , Liver/metabolism , Male , NF-kappa B/genetics , NF-kappa B/metabolism , Rats
19.
J Agric Food Chem ; 70(14): 4353-4361, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35380825

ABSTRACT

Chronic stress causes duodenal damage, in which iron death is likely to play an important role. Chlorogenic acid (CGA), one of the most widely consumed dietary polyphenols, has been shown to protect the intestine. However, it is unclear whether CGA exerts a duodenoprotective effect in chronic stress by inhibiting ferroptosis. In this work, rats were daily exposed to restraint stress for 6 h over 21 consecutive days, with/without CGA (100 mg/kg, gavage). CGA reduced blood hepcidin, iron, reactive oxygen species (ROS), and ferroportin 1 (FPN1) levels and upregulated the levels of ferroptosis-related biomarkers (GPX4, GSH, NADPH, etc.). These results confirmed that CGA inhibited ferroptosis in the duodenum. Furthermore, the use of S3I-201 (STAT3 inhibitor) helped to further clarify the mechanism of action of CGA. Overall, CGA could reduce hepcidin production by inhibiting the IL-6/JAK2/STAT3 pathway in the liver to increase the expression of FPN1 in the duodenum, which restored iron homeostasis and inhibited ferroptosis, alleviating chronic stress-induced duodenal injury.


Subject(s)
Ferroptosis , Animals , Chlorogenic Acid , Duodenum/metabolism , Ferroptosis/genetics , Hepcidins/genetics , Interleukin-6/genetics , Interleukin-6/pharmacology , Iron/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Rats , Signal Transduction
20.
Front Plant Sci ; 12: 770398, 2021.
Article in English | MEDLINE | ID: mdl-34721495

ABSTRACT

Theanine, a unique non-proteinogenic amino acid, is one of the most abundant secondary metabolites in tea. Its content largely determines green tea quality and price. However, its physiological roles in tea plants remain largely unknown. Here, we showed that salt stress significantly increased the accumulation of glutamate, glutamine, alanine, proline, and γ-aminobutyric acid, as well as theanine, in the new shoots of tea plants. We further found that salt stress induced the expression of theanine biosynthetic genes, including CsGOGATs, CsAlaDC, and CsTSI, suggested that salt stress induced theanine biosynthesis. Importantly, applying theanine to the new shoots significantly enhanced the salt stress tolerance. Similar effects were also found in a model plant Arabidopsis. Notably, exogenous theanine application increased the antioxidant activity of the shoots under salt stress, suggested by reduced the reactive oxygen species accumulation and lipid peroxidation, as well as by the increased SOD, CAT, and APX activities and expression of the corresponding genes. Finally, genetic evidence supported that catalase-mediated antioxidant scavenging pathway is required for theanine-induced salt stress tolerance. Taken together, this study suggested that salt stress induces theanine biosynthesize in tea plants to enhance the salt stress tolerance through a CAT-dependent redox homeostasis pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...