Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(6): e100160, 2014.
Article in English | MEDLINE | ID: mdl-24955773

ABSTRACT

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases in the world. In this study, a single dominant powdery mildew resistance gene MlIW172 was identified in the IW172 wild emmer accession and mapped to the distal region of chromosome arm 7AL (bin7AL-16-0.86-0.90) via molecular marker analysis. MlIW172 was closely linked with the RFLP probe Xpsr680-derived STS marker Xmag2185 and the EST markers BE405531 and BE637476. This suggested that MlIW172 might be allelic to the Pm1 locus or a new locus closely linked to Pm1. By screening genomic BAC library of durum wheat cv. Langdon and 7AL-specific BAC library of hexaploid wheat cv. Chinese Spring, and after analyzing genome scaffolds of Triticum urartu containing the marker sequences, additional markers were developed to construct a fine genetic linkage map on the MlIW172 locus region and to delineate the resistance gene within a 0.48 cM interval. Comparative genetics analyses using ESTs and RFLP probe sequences flanking the MlIW172 region against other grass species revealed a general co-linearity in this region with the orthologous genomic regions of rice chromosome 6, Brachypodium chromosome 1, and sorghum chromosome 10. However, orthologous resistance gene-like RGA sequences were only present in wheat and Brachypodium. The BAC contigs and sequence scaffolds that we have developed provide a framework for the physical mapping and map-based cloning of MlIW172.


Subject(s)
Ascomycota , Chromosome Mapping , Disease Resistance/genetics , Genes, Plant , Plant Diseases/genetics , Triticum/genetics , Plant Diseases/microbiology , Polyploidy , Triticum/microbiology
2.
Theor Appl Genet ; 124(6): 1041-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22170431

ABSTRACT

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is an important foliar disease of wheat worldwide. Wild emmer (Triticum turgidum var. dicoccoides) is a valuable genetic resource for improving disease resistance in common wheat. A powdery mildew resistance gene conferring resistance to B. graminis f. sp. tritici isolate E09 at the seedling and adult stages was identified in wild emmer accession IW170 introduced from Israel. An incomplete dominant gene, temporarily designated MlIW170, was responsible for the resistance. Through molecular marker and bulked segregant analyses of an F(2) population and F(3) families derived from a cross between susceptible durum wheat line 81086A and IW170, MlIW170 was located in the distal chromosome bin 2BS3-0.84-1.00 and flanked by SSR markers Xcfd238 and Xwmc243. MlIW170 co-segregated with Xcau516, an STS marker developed from RFLP marker Xwg516 that co-segregated with powdery mildew resistance gene Pm26 on 2BS. Four EST-STS markers, BE498358, BF201235, BQ160080, and BF146221, were integrated into the genetic linkage map of MlIW170. Three AFLP markers, XPaacMcac, XPagcMcta, XPaacMcag, and seven AFLP-derived SCAR markers, XcauG2, XcauG3, XcauG6, XcauG8, XcauG10, XcauG20, and XcauG25, were linked to MlIW170. XcauG3, a resistance gene analog (RGA)-like sequence, co-segregated with MlIW170. The non-glaucousness locus Iw1 was 18.77 cM distal to MlIW170. By comparative genomics of wheat-Brachypodium-rice genomic co-linearity, four EST-STS markers, CJ658408, CJ945509, BQ169830, CJ945085, and one STS marker XP2430, were developed and MlIW170 was mapped in an 2.69 cM interval that is co-linear with a 131 kb genomic region in Brachypodium and a 105 kb genomic region in rice. Four RGA-like sequences annotated in the orthologous Brachypodium genomic region could serve as chromosome landing target regions for map-based cloning of MlIW170.


Subject(s)
Ascomycota/pathogenicity , Chromosome Mapping/methods , Plant Diseases/genetics , Triticum/genetics , Ascomycota/growth & development , Brachypodium/genetics , Brachypodium/immunology , Chromosomes, Plant/genetics , DNA, Plant/genetics , Disease Resistance , Expressed Sequence Tags , Genes, Dominant , Genes, Plant , Genetic Linkage , Israel , Oryza/genetics , Oryza/immunology , Plant Diseases/immunology , Plant Diseases/microbiology , Polymorphism, Restriction Fragment Length , Sequence Analysis, DNA , Triticum/immunology , Triticum/microbiology
3.
Theor Appl Genet ; 121(8): 1613-21, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20686747

ABSTRACT

Powdery mildew caused by Blumeria graminis f. sp. tritici is one of the most important wheat diseases worldwide and breeding for resistance using diversified disease resistance genes is the most promising approach to prevent outbreaks of powdery mildew. A powdery mildew resistance gene, originating from wild emmer wheat (Triticum turgidum var. dicoccoides) accessions collected from Israel, has been transferred into the hexaploid wheat line 3D232 through crossing and backcrossing. Inoculation results with 21 B. graminis f. sp. tritici races indicated that 3D232 is resistant to all of the powdery mildew isolates tested. Genetic analyses of 3D232 using an F(2) segregating population and F(3) families indicated that a single dominant gene, Ml3D232, confers resistance in the host seedling stage. By applying molecular markers and bulked segregant analysis (BSA), we have identified polymorphic simple sequence repeats (SSR), expressed sequence tags (EST) and derived sequence tagged site (STS) markers to determine that the Ml3D232 is located on chromosome 5BL bin 0.59-0.76. Comparative genetic analyses using mapped EST markers and genome sequences of rice and Brachypodium established co-linearity of the Ml3D232 genomic region with a 1.4 Mb genomic region on Brachypodium distachyon chromosome 4, and a 1.2 Mb contig located on the Oryza sativa chromosome 9. Our comparative approach enabled us to develop new EST-STS markers and to delimit the genomic region carrying Ml3D232 to a 0.8 cM segment that is collinear with a 558 kb region on B. distachyon. Eight EST markers, including an NBS-LRR analog, co-segregated with Ml3D232 to provide a target site for fine genetic mapping, chromosome landing and map-based cloning of the powdery mildew resistance gene. This newly developed common wheat germplasm provides broad-spectrum resistance to powdery mildew and a valuable resource for wheat breeding programs.


Subject(s)
Ascomycota/physiology , Chromosome Mapping/methods , Chromosome Segregation/genetics , Genes, Plant/genetics , Immunity, Innate/genetics , Plant Diseases/immunology , Triticum/genetics , Ascomycota/isolation & purification , Base Sequence , Brachypodium/genetics , Chromosomes, Plant/genetics , Expressed Sequence Tags , Genomics , Microsatellite Repeats/genetics , Oryza/genetics , Physical Chromosome Mapping , Plant Diseases/genetics , Plant Diseases/microbiology , Sequence Homology, Nucleic Acid , Triticum/immunology , Triticum/microbiology
4.
Theor Appl Genet ; 119(3): 531-9, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19471905

ABSTRACT

Powdery mildew caused by Blumeria graminis f. sp. tritici is an important wheat disease in China and other parts of the world. Wild emmer (Triticum turgidum var. dicoccoides) is the immediate progenitor of cultivated tetraploid and hexaploid wheats and thus an important resource for wheat improvement. Wild emmer accession IW2 collected from Mount Hermon, Israel, is highly resistant to powdery mildew at the seedling and adult plant stages. Genetic analysis using an F(2) segregating population and F(2:3) families, derived from a cross between susceptible durum cultivar Langdon and wild emmer accession IW2, indicated that a single dominant gene was responsible for the resistance of IW2. Bulked segregant and molecular marker analyses detected that six polymorphic SSR, one ISBP, and three EST-STS markers on chromosome 3BL bin 0.63-1.00 were linked to the resistance gene. Allelic variations of resistance-linked EST-STS marker BE489472 revealed that the allele was present only in wild emmer but absent in common wheat. Segregation distortion was observed for the powdery mildew resistance allele and its linked SSR markers with preferential transmission of Langdon alleles over IW2 alleles. The resistance gene was introgressed into common wheat by backcrossing and marker-assisted selection. Since no designated powdery mildew resistance gene has been found on chromosome 3BL, the resistance gene derived from wild emmer accession IW2 appears to be new one and was consequently designated Pm41.


Subject(s)
Ascomycota/genetics , Chromosomes, Plant , Genes, Plant , Plant Diseases/genetics , Triticum/genetics , Alleles , Crosses, Genetic , Expressed Sequence Tags , Genetic Markers , Genetic Variation , Heterozygote , Immunity, Innate , Minisatellite Repeats , Physical Chromosome Mapping , Selection, Genetic
5.
Theor Appl Genet ; 119(2): 223-30, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19407985

ABSTRACT

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases worldwide in areas with cool or maritime climates. Wild emmer (Triticum turgidum var. dicoccoides) is an important potential donor of disease resistances and other traits for common wheat improvement. A powdery mildew resistance gene was transferred from wild emmer accession G-303-1M to susceptible common wheat by crossing and backcrossing, resulting in inbred line P63 (Yanda1817/G-303-1 M//3*Jing411, BC(2)F(6)). Genetic analysis of an F(2) population and the F(2:3) families developed from a cross of P63 and a susceptible common wheat line Xuezao showed that the powdery mildew resistance in P63 was controlled by a single recessive gene. Molecular markers and bulked segregant analysis were used to characterize and map the powdery mildew resistance gene. Nine genomic SSR markers (Xbarc7, Xbarc55, Xgwm148, Xgwm257, Xwmc35, Xwmc154, Xwmc257, Xwmc382, Xwmc477), five AFLP-derived SCAR markers (XcauG3, XcauG6, XcauG10, XcauG20, XcauG22), three EST-STS markers (BQ160080, BQ160588, BF146221) and one RFLP-derived STS marker (Xcau516) were linked to the resistance gene, designated pm42, in P63. pm42 was physically mapped on chromosome 2BS bin 0.75-0.84 using Chinese Spring nullisomic-tetrasomic, ditelosomic and deletion lines, and was estimated to be more than 30 cM proximal to Xcau516, a RFLP-derived STS marker that co-segregated with the wild emmer-derived Pm26 which should be physically located in 2BS distal bin 0.84-1.00. pm42 was highly effective against 18 of 21 differential Chinese isolates of B. graminis f. sp. tritici. The closely linked molecular markers will enable the rapid transfer of pm42 to wheat breeding populations thus adding to their genetic diversity.


Subject(s)
Ascomycota/physiology , Chromosome Mapping , Genes, Plant , Immunity, Innate/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Triticum/genetics , Triticum/microbiology , Amplified Fragment Length Polymorphism Analysis , Chromosomes, Plant/genetics , Genetic Linkage , Genetic Markers , Plant Diseases/immunology
6.
Theor Appl Genet ; 106(2): 341-5, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12582861

ABSTRACT

The powdery mildew resistance has been transferred from an Israeli wild emmer (Triticum dicoccoides) accession "G-305-M" into common wheat by crossing and backcrossing (G-305-M/781//Jing 411*3). Genetic analysis showed that the resistance was controlled by a single dominant gene at the seedling stage. Among the 102 pairs of SSR primers tested, four polymorphic microsatellite markers (Xpsp3029, Xpsp3071, Xpsp3152 and Xgwm570) from the long arm of chromosome 6A were mapped in a BC(2)F(3) population segregating for powdery mildew resistance and consisting of 167 plants. The genetic distances between the resistance gene and these four markers were: 0.6 cM to Xpsp3029, 3.1 cM to Xpsp3071, 11.2 cM to Xpsp3152 and 20.4 cM to Xgwm570, respectively. The order of these microsatellite loci agreed well with the established microsatellite map of chromosome arm 6AL. We concluded that the resistance gene was located on the long arm of chromosome 6AL. Based on the origin and chromosomal location of the gene, it is suggested that the resistance gene derived from "G-305-M" is a novel powdery mildew resistance gene and is temporarily designated MlG.


Subject(s)
Genes, Plant/genetics , Microsatellite Repeats , Plant Diseases/genetics , Triticum/genetics , Chromosome Mapping , Chromosomes, Plant , Crosses, Genetic , Genes, Dominant , Genetic Markers
SELECTION OF CITATIONS
SEARCH DETAIL
...